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Abstract  
 

We present a detailed overview of the structure and activities associated with the NASA-led ground-

validation component of the NASA-JAXA Global Precipitation Measurement (GPM) mission. The 

overarching philosophy and approaches for NASA’s GV program are presented with primary focus 

placed on aspects of direct validation and a summary of physical validation campaigns and results. 

We describe a spectrum of key instruments, methods, field campaigns and data products developed 

and used by NASA’s GV team to verify GPM level-2 precipitation products in rain and snow.  We 

describe the tools and analysis framework used to confirm that NASA’s Level-1 science requirements 

for GPM are met by the GPM Core Observatory.  Examples of routine validation activities related to 

verification of Integrated Multi-satellitE Retrievals for GPM (IMERG) products for two different 

regions of the globe (Korea and the U.S.) are provided, and a brief analysis related to IMERG 

performance in the extreme rainfall event associated with Hurricane Florence is discussed.    

 

1.1.1 Overview 
 

The overarching philosophy for NASA’s implementation of GPM ground validation (GV) revolves 

around three highly complementary approaches (Hou et al., 2014; Skofronick-Jackson et al., 2017).  

These approaches include “direct”, “physical” and “integrated” validation. Direct validation uses 

routinely available instrument networks and data products to assess convergence between and sources 

of uncertainty in GV ground- and GPM space-based precipitation estimates provided by the Dual-

Frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI). Because versions of GPM 

products evolve as the mission progresses and statistical validation of orbital data should generally 

improve with the duration of sampling that occurs as the mission progresses, direct GV datasets are 

generally comprised of sustained data collections over regional to continental scales. As such, direct 

GV relies on contributions of high quality, calibrated ground observations from both operational and 

research instruments such as rain gauge and radar networks, regional and continental scale 

precipitation and hydrological products, and related activities on regional to continental scales.  
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Physical validation operates within the larger envelope of direct validation, but is focused on the 

execution of field campaigns designed to study targeted precipitation processes for the testing and 

improvement of retrieval algorithms. This is accomplished by use of combined airborne and ground-

based field measurements of cloud microphysical and precipitation properties through the 

atmospheric column.  Common instruments used include airborne in situ cloud microphysical probes, 

high altitude airborne and ground-based mult-frequency and/or polarimetric radar, and airborne 

multi-frequency microwave radiometers spanning microwave frequencies sampled by instruments in 

the GPM satellite constellation.  Field campaign observations are often further used for testing of 

coupled atmospheric simulations designed for active and passive microwave retrieval algorithm 

testing (e.g., Matsui et al., 2013).  Finally, integrated validation is focused on the assessment and 

utility of GPM products and their uncertainties in hydrolometeorological and related applications.  In 

a sense, integrated validation represents a bridge between GPM measurements, validation, and the 

hydrologic applications community.  

Because many GPM applications and related “utilities” ultimately focus on quality of the products in 

a “direct” sense, in addition to outlining the NASA GPM GV program as a whole, this chapter will 

place a primary focus on relating GV datasets to direct validation activities with a brief review of 

results related to physical validation campaigns.     

 

4.2.1.1 GV Measurement Synergy 

 

NASA GV instrument components provide complementary precipitation measurements at a range of 

scales (Figure 1) in time and space.  From a direct GV perspective, the  requirement to validate myriad 

orbit-level GPM precipitation products (rain detection and intensity, drop size distribution, detection 

of snow etc.) at nearly instantaneous timescales for instrument fields of view (IFOV) of ~5 km or 

larger, requires the combined use of volume scanning multi-parameter radar and gauge 

instrumentation. From the perspective of physical GV (precipitation processes, algorithm physics) 

and integrated GV (hydrologic studies) sub-IFOV spatial scales are required.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Translation of high quality precipitation measurements to satellite footprint and swath 

measurement scales for direct and physical validation. 

 

Operating within and between the aforementioned scales and to accommodate the GV requirements, 

individual or spatially distributed rain gauge and disdrometer point measurements  reference scanning 

dual polarimetric (DP) radar observations.  In turn, DP radars translate the gauge and disdrometer 

measurements to instantaneously-viewed and spatially-distributed footprint, volume, and swath 

scales sampled by GPM satellite instruments.  High quality national DP radar networks such as the 

WSR-88D radar network operated by the National Weather Service in the U.S., provide a continuous, 

reliable, and regional to continental scale "heartbeat" of statistical sampling, while research-grade DP 



 

radars provide the capability to flexibly target 3-D precipitation structure from sub-footprint to 

regional scales at high space-time resolution.  In turn, these ground observations support airborne in 

situ and remote sensing measurements collected during physical validation campaigns- a collective 

bridging of ground, atmospheric column and space-based measurements of the precipitation process. 

 

4.2.2 Validation instruments, data, and examples 
 

Herein we describe primary GV datasets with examples of direct GPM level-2 (individual orbit) DPR 

and GMI validation including GPM Core Observatory (hereafter, “GPM CO”) “level-1” science 

requirements (L1SR; cf. Skofronick-Jackson et al., 2017). L1SRs can be summarized as follows: 1) 

quantify rainrates over the range [0.22-110] mm hr-1 ([0.2-60] mm hr-1) and at effective resolution of 

5 km (15 km) for DPR (GMI); 2) detect falling snow at the respective instrument effective resolutions 

for both DPR and GMI; 3) estimate rain rates at intensities of 1 mm hr-1 and 10 mm hr-1 within bias 

and uncertainty levels that do not exceed 50% and 25%, respectively, at a resolution of 50 km for the 

GPM CO; and 4) estimate the mass-weighted mean diameter (Dm) of the drop size distribution (DSD) 

to within +/-0.5 mm of GV measurements for DPR. 

 

4.2.2.1 Primary datasets 

 

U.S. and international GV datasets collected and routinely processed  by the NASA GV team are 

summarized in Tables 1.1 and Table 1.2, respectively (see also Skofronick-Jackson et al., 2018).   

 

Table 1.1:  NASA GV primary U.S. data products routinely produced from GPM launch to present. 

Instruments at the WFF Supersite are often deployed for extended periods in targeted regimes or to 

augment external instrument networks of opportunity. 

 

These data are currently collected, or have been collected in an extended mode (one year or longer) 

for targeted continental and oceanic locations covering a variety of regimes, and from modes of near 

continuous continental scale monitoring to short-term periodic regional campaigns. Note that the 

international datasets shown in Table 1.2 represent only those data routinely processed by NASA 

Product Instrument Data Product Description 

U.S. Continental Scale/Multi-Regime Direct Validation  

GV Multi-Radar Multi-Sensor 

(MRMS) rain intensity and 

accumulation products 

WSR-88D Radar and 

collective U.S. rain gauge 

networks 

GV-processed CONUS NOAA MRMS (Zhang et al., 2016) radar/rain gauge 

bias-adjusted precipitation rates and types. Resolution of 2-minute and 0.01o x 

0.01o for CONUS-coincident GPM orbits launch to present, and continuous 30 

minute accumulations (cf. Kirstetter et al., this book) 

Polarimetric Radar Validation 

Network (VN)   

WSR-88D operational and 

Research grade (NPOL, 

KPOL) radars with GPM 
Satellite 

For 70+ sites; CONUS/Offshore (including Kwajalein Atoll; KPOL) quality 

controlled DP radar and 3-D volumes of GPM Core satellite-coincident geo 

and volume-matched reflectivity, rain-rates, hydrometeor types, rain drop size 
distributions, and match statistics within 100 km range of ground radars. 

NASA Wallops Super Site (WFF) Datasets Supersite/instrument base established at WFF and the surrounding region.  

Coordinated, sustained collection of GPM satellite and GV overpass datasets. 

Scanning S-band polarimetric radar 

volumetric precipitation 

characteristics 

NASA NPOL S-Band Radar GPM orbit-coincident/weather event PPIs, RHIs, vertically pointing volume 

scans (DP moments, hydrometeor types, rain rates, drop size distributions). 1° 

beam x 125 m range gates. (Gerlach and Petersen, 2012; Wolff et al., 2015) 

Scanning dual-frequency (Ka/Ku) 

polarimetric radar volumetric 

precipitation characteristics 

NASA Dual-frequency, Dual-

pol. Doppler Radar (D3R) 

GPM orbit-coincident/weather event PPIs, RHIs, vertically pointing volume 

scans and cross-sections (Ku/Ka-Band I&Q data, polarimetric moments, 

reflectivity, dual-frequency ratio, hydrometeor types, rain rates, drop size 

distributions). Radar ray 1° x 150 m range gates (Vega et al., 2014). 

MRR-2/Pro precipitation profiles K-Band Micro Rain Radar 

II/Pro 

Continuous vertically pointing K-Band radar; 2° beam x 30 – 60 m resolution 

for 30 gates; reflectivity, velocity spectra, DSD, precipitation rate;  

Disdrometer network hydrometeor 

size distributions, types, rain rate 

2D-Video and Parsivel 

Disdrometers network 

Disdrometer network continuous hydrometeor size distribution, types, shapes, 

and precipitation rates.  1–minute resolution, multi--instrument networks.  

Precipitation imaging, rain and snow 

size distributions 

Precipitation Imaging Package 
(PIP) 

Continuous hydrometeor images, size distributions, fall-speeds, bulk density 
and water equivalent precipitation rate; deployments at WFF, Canada, 

Finland, Antarctica, Republic of Korea. 

Dense rain gauge network rain 

intensity/accumulation 

Single/dual/triple platform 

tipping bucket rain gauges 

Continuous, quality-controlled, 1-minute average and accumulated rainfall, 

time of tip.  25 dual-platform gauges in network diameter of ~6 km, and 

numerous platforms in a broader 0.5° regional grid. 

Snow, rain water accumulation rates Pluvio 200, 400 weighing 

gauge network(s) 

Continuous weighing-gauge frozen and liquid precipitation accumulations. 

Temporal scale 1 – 10 minute accumulations. Includes WFF, 12-gauge 

Marquette, Michigan network, international deployments.  



 

GPM GV; they do not represent the full complement of instrument, analysis, and product datasets 

collected by numerous international NASA Precipitation Measurement Mission (PMM) and GPM 

collaborating partners contributing to GPM GV around the globe (cf., Hou et al., 2014 and 

Skofrokick-Jackson et al. 2017).  Many of these datasets can be accessed on the GPM GV website 

found at https://gpm-gv.gsfc.nasa.gov/.   

 

Table 1.2: Routinely provided or extended international datasets processed by NASA GV including 

collaborative instrument deployments. WegenerNet- U. of Graz, Austria; CEMADEN- Brazilian 

Center for Natural Disaster Monitoring and Early Warnings; ECCC- Environment Climate Change 

Canada; FMI- Finish Meteorological Institute; KMA- Korean Meteorological Administration; 

KNMI- Royal Netherlands Meteorological Institute; Spain- U. of Castilla-La Mancha 

Country Product/Instrument Description 

Austria WegenerNet dense rain gauge network for GPM level-2 and IMERG footprint-scale validation (cf. Kirchenghast et al., 2014) 

Brazil CEMADEN; Routine/operational S-band dual-polarimetric radar volumes (9 radars) VN-processed; national rain gauge network 

Canada ECCC-deployed NASA PIP, Pluvio gauges and routine data collection at multi-instrument sites for snowfall studies 

Finland FMI/U. Helsinki C-Band polarimetric radar and supporting snow water equivelent data from NASA PIP, Pluvio, hot-plate 

instruments deployed at Hytiaala site for continuous collection of snow products (cf. von Lerber et al., 2018). 

Republic of Korea KMA hourly gauge-adjusted radar estimates (RAD-RAR) of rain accumulation for IMERG validation (see Suk et al., 2013)  

Netherlands KNMI C-band dual-pol radar data for VN processing 

Spain-UCLM UCLM-Toledo extended deployment of TREx dual-pol radar at NASA WFF site for coordinated multi-frequency radar scanning   

 

We highlight for discussion three particular activities and associated datasets. 

 

i) Validation Network (VN): A critical component of the direct validation strategy involves use of 

dual-polarimetric (DP) radar products (Fig. 1). More than 75 U.S. VN operational WSR-88D (land 

and ocean) and contributing international DP radars are used for statistical comparisons of VN 

equivalent radar reflectivity (Ze), DP moments, and DP-derived precipitation parameters such as rain 

rate, the DSD (mass-weighted mean diameter, Dm, normalized intercept parameter, Nw), and 

hydrometeor types. VN databases are built by carefully geolocating and matching coincident VN and 

GPM DPR radar pulse volumes along all DPR rays (Schwaller and Morris, 2011). While the VN can 

be applied to virtually any DP radar and GPM overpass, the majority of VN radars used are located 

in the continental U.S. and were selected to minimize obvious radar quality issues associated with 

excessive beam blockage and clutter. As such, the majority of the VN radars used are National 

Weather Service WSR88-D DP radars located in the central to eastern continental U.S.  Oceanic 

locations include DP radars in Kwajalein, Middleton Island, Hawaii, Guam, and Puerto Rico. 

Specific to processing (cf. Pippitt et al., 2015), VN DP radar data first undergo quality control, and 

estimation of rain and hydrometeor properties. DP clutter removal, multiple radar rain rate estimators, 

DSD and hydrometeor identification algorithms are all applied using approaches well established in 

the literature. For example, precipitation estimates in VN radar volumes are accomplished using 

hybrid DP precipitation estimation approaches based various combinations of reflectivity (Z), 

differential phase (KDP), and differential reflectivity (ZDR) as summarized in Bringi et al. (2004), 

Cifelli et al. (2011), Chen et al. (2017), and Bucovcic et al. (2018). DSD retrievals derive from a 

heritage of radar modeling approaches of 2D Video Disdrometer (2DVD) data (e.g., Brandes et al., 

2004; Thurai et al., 2012). The NASA GV team has collected 2DVD DSD datasets in a broad sample 

of precipitation regimes associated with locations of numerous physical-validation field efforts (Sec. 

1.1.3) and extended multi-year observation periods at both Wallops Flight Facility (WFF) in Virginia 

and the Southeastern U.S. in Huntsville, Alabama.  The 2DVD-diagnosed Nw and Dm are used to 

model polarimetric radar moments of Z and ZDR and create subsequent empirical functions relating 

the DSD observables to simulated ZDR and Z (e.g., Tokay et al., 2018). The derived equations for 

Dm [f(ZDR)] and Nw [f(Z,ZDR)] are then used with VN polarimetric data to generate volume fields 

of the DSD for ray and range gate comparisons to DPR observations.  DP fuzzy hydrometeor 

idenfication algorithms (HID) are applied within the VN processing stream (e.g., Dolan and Rutledge, 

2009 and references therein).  After VN radar parameter retrievals are completed, GPM overpass and 

VN polarimetric data for precipitation events occurring within 100 km of a given radar are volume-

https://gpm-gv.gsfc.nasa.gov/


 

matched and compared at geometric intersections of the GPM DPR and ground radar scans (Bolen 

and Chandrasekar, 2003).   To date, more than 45,000 volumes of coincident VN DP and GPM DPR 

radar data and derived products have been processed and matched since GPM launch.  VN matched 

data files and intermediate DP radar and GPM data files are all archived.    

 

ii) GV-Multi-Radar Multi-Sensor (MRMS) products: In parallel with the VN, NOAA/University of 

Oklahoma MRMS (cf., Zhang et al., 2016) radar-based estimates of precipitation are post-processed 

to provide a GPM GV dataset for continental scale statistical validation of GPM rain and falling snow 

water equivalent rates (SWER) over the U.S. (130W - 60W, 20N - 55N). It comprises precipitation 

rate and type (liquid, frozen, convective, stratiform) together with radar data quality and gauge-bias 

ratio metrics at 0.01° spatial resolution. The resultant product, termed Level-2 (L2) GV-MRMS, is 

suited to “instantaneous” orbit-level validation of GPM precipitation estimates for all CONUS GPM 

overpasses (Kirstetter et al. 2014). A 30-minute “level-3 (L3)” precipitation  accumulation dataset 

(also including dominant precipitation type, radar data quality etc.) is also produced for validating 

products such as the GPM Integrated Merged GPM satellite rainfall product (IMERG; Tan et al., 

2016, 2017, O and Kirstetter, 2018, Huffman et al., 2018). 

The creation of a “best” GV-MRMS reference critically depends on additional adjustment and 

filtering of the datasets. For the GV-MRMS rain rate dataset, MRMS hourly gauge-bias adjustments 

are applied to 2-minute radar-estimated rain rates using a spatially-variable multiplicative bias field 

(e.g., Amitai et al., 2012, Kirstetter et al., 2012). A conservative filtering is applied on instances when 

the radar and gauge have significant quantitative disagreement (i.e., radar–rain gauge hourly ratios 

outside of the range 0.1–10) and by using a radar quality index (RQI). Only GV-MRMS rain pixels 

associated with RQI values of 1.0 are used to validate GPM rain rates. Snow water equivalent rates 

(SWER) (cf. Zhang et al, 2016) are processed at the same temporal/spatial scales as rain but with no 

bias correction or RQI-based filter applied, instead, additional beam height filters are used (cf. Sec. 

4.2.2.4). Use of GV-MRMS data is constrained to a large region of CONUS where beam heights are 

≤ 2km (1.5 km) for rain (snow) for evaluating L1SR near surface precipitation rate criteria. 

While the filtering approaches mentioned may not eliminate all errors in the GV-MRMS reference, 

they standardize the reference product across regions of the U.S. The evaluation of MRMS rain rates 

at fine scale (0.01° and 5-km) by Kirstetter et al. (2015) demonstrated that biases are significantly 

mitigated using these qualitative and quantitative filtering procedures. Additional evaluation of the 

GV-MRMS using spatially-dense NASA WFF Pocomoke and Nassawadox rain gauge networks 

(Table 1.1) demonstrated GV-MRMS biases of 10%-15% or less and random errors of 35-40 % for 

hourly rain rate estimates at the nominal footprint of the DPR. For L1SR verification we assume that 

the MRMS bias relative to that observed with the dense GV gauge networks will remain at or below 

~15% at the 50 km scale, and that random errors will substantially decrease with spatial averaging 

(e.g., Steiner et al., 2003). For GPM L1SRs related to detection of snow, initial evaluations of MRMS 

rain/snow delineation are favorable, though cases of weak horizontal temperature gradients can be 

challenging (Chen et al. 2016). The high spatial resolution of GV-MRMS allows matching the 

resolution of any L2 and L3 GPM precipitation and estimate area-mean precipitation rates along with 

sub-IFOV precipitation occurence, variabilty and types for direct validation of GPM DPR, GPROF, 

and IMERG products (Kirstetter et al. 2012, 2014, 2015; Tan et al., 2016, 2017a, Kidd et al., 2018).   

 

iii) NASA WFF GV Precipitation Research Facility Products and Support Activities: GPM GV 

maintains a world-class instrumentation network based at the NASA Wallops Flight Facility (WFF) 

on the mid-Atlantic Eastern Shore of Virginia.  Instruments operated as part of this “supersite” include 

NASA’s S-band DP radar (NPOL; Gerlach and Petersen, 2011; Wolff et al., 2015), the Ku-Ka band 

Dual-frequency Dual-Polarimetric Doppler Radar (D3R; Vega et al., 2014), Micro Rain Radars 

(MRR-2, MRR-Pro), Precipitation Imaging Package(s) (PIP; e.g, Newman et al 2009; von Lerber et 

al., 2018), Pluvio-2 weighing gauges, and networks of multi-tipping bucket rain gauge platforms and 

disdrometers (2D Video, Parsivel).  



 

NPOL radar data are quality controlled and and used for GPM direct statistical and physical process 

studies by science team members.  D3R datasets are stored in raw I&Q form and further processed 

on a case-by-case basis by team members at Colorado State University. D3R data products include 

attenuation corrected Ku/Ka-band reflectivity, derived quantities such as rain rates, hydrometeor 

types and DSD.  When not deployed for field campaigns, the instruments are operated within the 

WFF network (or other domestic partner sites) to collect data during GPM overpasses and other 

weather-related targets of opportunity. Subsets of these instruments are also routinely operated with 

international GV partners (Table 1.2). WFF rain gauge network datasets are quality controlled and 

processed to create time-of-tip and one-minute splined rain rate products (e.g., Wang et al., 2008).  

The products are used to estimate area-mean rain rate at footprint scales and compile intrafootprint 

variabilty statistics, as an independent means of verifying GV-MRMS rain rate estimates (e.g., Marks 

et al., 2017), and direct validation of GPM DPR, GPROF, and IMERG products (Tan et al., 2016, 

2017b, Kidd et al., 2018). Disdrometer network data (2D Video, Parsivel) are used for verifying GV 

radar calibration, developing DSD retrieval algorithms for GV polarimetric radars in the course of 

evaluating GPM DSD science requirements, and for studies of global to footprint scale DSD 

variability (Williams et al., 2014, Liao et al., 2014, Gatlin et al., 2015, Bringi et al., 2015, Thurai et 

al., 2017, Tokay et al, 2017). 

For snow, PIP data are used to quantify the snow particle size distribution, bulk density, and to verify 

GV SWER products (e.g., Huang et al,. 2015, Kniefel et al., 2015, von Lerber et al., 2018). Liao et 

al. (2016) used WFF PIP data to demonstrate  GPM DPR dual-frequency ratio application to retrievals 

of bulk snow water contents and equivalent rates independent of derived particle size distribution 

parameters.   

 

4.2.2.2 Example Applications of VN datasets 

 

VN datasets serve as a check on satellite and ground-based radar calibration, algorithm performance, 

and derived parameter stability between GPM product versions. Figure 2 illustrates one example- VN 

detection of the DPR reflectivity calibration change that occurred with release of DPR Version 5 (V5) 

products. In Figure 2, VN and DPR sample volumes are compared for stratiform precipitation 

observed above the melting layer.  Interestingly, the DPR reflectivity shift also impacted retrieved 

parameters such as Dm (Figure 3), evident as a slight (~0.2 mm) shift in the bias between V4 and V5 

Dm relative to VN. Figure 3 also demonstrates that the GPM retrieval of Dm satisfies L1SRs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. VN verification of DPR calibration adjustment.  The DPR Ku-band radar calibration was 

adjusted by JAXA from Version 4 (V4; left) to Version 5 (V5; right). The V5 increase of DPR Ku-

Band radar reflectivity (Ze) by ~1.2 dB (y-axis) is clearly evident in relative frequency histograms 

(shaded, percent) when plotted against the Ku-adjusted VN Ze (GR: X-axis).   

 



 

Another example for application of the VN includes direct verification of DPR algorithm corrections 

of Path Integrated Attenuation (PIA) as a function of precipitation type (e.g., convective/stratiform). 

Indeed, PIA-corrected reflectivity as a function of precipitation type is fundamental to DPR 

precipitation estimation and DSD retrieval (e.g., Seto and Iguchi, 2015). The correction of DPR 

reflectivity and subsequent retreival of precipitation rates can be especially challenging for convective 

precipitation at the frequencies used by the DPR. However, the VN data provide a robust verification 

of GPM PIA algorithm ability to correct convective reflectivity profiles (e.g., Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. As in Fig. 1, but Dm (mm). Displayed are the V4 (left) and V5 (right) DPR Dm relative to 

GV. Adjusting the DPR calibration in V5 resulted in a slight, but perceptable positive bias shift in the 

DPR Dm relative to GV. NASA L1SRs for Dm (+/- 0.5 mm) indicated by dashed lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. DPR Measured (left) and PIA-corrected (right) V5 Ku-Band radar reflectivity (y-axis) in 

convective precipitation plotted against VN radar reflectivity (x-axis) for layers of precipitation below 

the height of the 0°C level. Similar results are attained for stratiform precipitation (not shown).   

 

More recently we have been modifying the VN for direct validation of GPM SWER. The approach 

recognizes the intrinsic difficulties in measuring an instantaneous SWER (even at the ground) at 

IFOV scales. The methodology relies on multiple radar-based estimators, seeking only first-order 

agreement between the DPR and the VN estimates. We leverage VN DP radar hydrometeor HID 

fields to identify the occurrence of snow and then estimate SWER using polarimetric estimators (e.g., 

capturing physical variabilty in the SWER; Bukovcic et al., 2018), or reflectivity-SWER (Z-S) 

equations based on probabablistic quantitative precipitation estimation (PQPE; e.g., Kirstetter et al., 

2015). The VN estimation “ensemble” is thus constructed from a single DP estimator, and three PQPE 

estimators (representing the 25th, 50th, and 75th percentile of Z-S SWER relationships). Verification 

of VN SWERs (Figure 5) is being tested against 11 Pluvio snow-gauges deployed in~15 km footprint 

located over and to the southwest of the Marquette, Michigan WSR-88D radar.   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Coincident and DPR footprint-matched VN-estimated SWER using the Marquette, 

Michigan WSR-88D radar (KMQT) and Pluvio network in the DPR swath, April 15, 2018.  The DPR 

single frequency estimate (left) is compared against the DP radar (center) and PQPE median 

estimators (right). The MQT Pluvio network is located west through south of KMQT and within 15 

km range. Range rings are illustrated at 50 and 100 km from KMQT. 

 

Preliminary results (Figure 5) indicate that the DPR estimates generally fall within the bounds of the 

VN estimators (all within a factor of two on SWER). Pluvio network reference data (20-minute mean 

and median SWER) for the 15 km footprint indicate a mean SWER of 2.4 mm hr-1, with an individual 

gauge range of 1.4-3.3 mm hr-1. Of the VN radar estimates, the PQPE median (50th percentile) 

estimator was the highest, with the DP radar estimator providing the best match to the Pluvio 

estimates.  The DPR estimate was slightly lower than the VN DP estimator. When upscaled to the 

CONUS-wide VN network for the full winter of 2018 (Figure 6), a similar trend is found. That is, the 

DPR markedly underestimates the 50th percentile PQPE SWER but more closely resembles the DP 

SWER and even the 25th% PQPE SWER. Further verification of the VN estimators using the Pluvio 

network and other select measurement sites will enable more quantitative estimation of the 

uncertainty in VN SWER estimates resulting in improved application to GPM validation efforts. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Scatter density plots for winter 2017/18 DPR normal swath (y-axis) SWER plotted against 

VN-estimated SWER (x-axis) for the PQPE 25th % (left), dual-pol (center), and 50th % (right) SWER 

estimators.  It is clear that the DPR SWER estimate best matches the VN dual-polarimetric SWER. 

 

4.2.2.3 Validation using GV-MRMS 

 

In parallel with VN datasets, high resolution GV-MRMS data serve as the primary contiguous 

continental scale reference for verifying GPM near surface rain rate estimation and snowfall 

detection. The data provide an efficient and statistically robust means to evaluate IFOV behavior of 

DPR estimates of rain rate for individual algorithm versions, precipitation regimes and types, and to 



 

monitor evolution of algorithm versions as the mission progresses.  Relative to evaluating the overall 

quality and evolution of the DPR retrievals using the GV-MRM, consider Figures 7 and 8.  Both 

figures provide scatter density plots for different radar-based retrieval algorithms.  For example, data 

shown in the single frequency KuPR algorithm scatter plots of Figure 7 suggest reasonable but 

somewhat similar comparisons between KuPR and the GV-MRMS across V4 to V6.  The net relative 

bias behavior in the Ku-PR estimate relative to GV-MRMS for all rain types evolves from a value of 

+2% in V4 to -10% in V5, with correlations of 0.53 to 0.51, respectively. Alternatively, in Figure 8, 

GV-MRMS products indicate that GPM rain rates estimated using the combined dual-frequency 

capability of the DPR radar and the GMI radiometer (e.g., the combined-radar radiometer algorithm; 

Grecu et al., 2016) more clearly improve with versions.  A much better match to the GV-MRMS is 

evident in V5 and V6 relative to V4, with a relatively large V4 sample bias of +61% that markely 

decreases to -3.6% in V5, and is +5.8% V6.  Correlations were similar between versions at 0.59, 0.55 

and 0.56 for V4, V5 and V6 respectively.    

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Evolution of GPM versions.  Joint histograms of GV-MRMS reference rain rate (x-axis) for 

all rain types plotted against matched DPR 2AKu-algorithm IVOV rain rate estimates (y-axis) V4 

(left), V5 (center) and V6 (right).   

 

 

 

 

 

 

 

 

 

 

 

Figure 8. As in Fig. 7, but matched-swath dual-frequency combined radar-radiometer algorithm.   

 

Importantly, the data points in Figures 7 and 8 are dominated by the occurrence of stratiform 

precipitation (e.g., rates typically below 10 mm hr-1). It is therefore interesting to examine the same 

data points partitioned as a function of their convective (C) or stratiform (S) rain rate classification 

(e.g., Figure 9).  Figure 9 displays the C and S precipitation comparisons for the combined algorithm, 

but the same behavior is also observed in the KuPR product. Also, recall from the VN example shown 

in Figure 4 that the retrieval algorithm does a reasonable job of correcting the radar reflectivity in 

convection. In Figure 9, the stratiform rain rate scatter is reasonably well behaved, resembling that of 

Figure 8. However, the convective rain rates of the GPM combined algorithm exhibit more error 

relative to the GV-MRMS, most notably at higher (> 5 mm hr-1) and lower (< 1 mm hr-1) rain rates. 

These departures from the GV-MRMS in convective rain contribute to the trends in Figures 7 and 8, 

but the underlying behavior is masked.  



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  As in Figure 8, but V5 combined algorithm for stratiform (left) and convective (right) 

precipitation.  The KuPR algorithm strongly resembles this plot as well.    

 

Behavior in the DPR-derived rain rates is important to track as they serve as an a priori database for 

radiometer retrievals in the Goddard Profiling (GPROF) algorithm (Kummerow et al., 2015). 

Consider Figure 10 which displays gridded comparisons of the KuPR and GMI-GPROF rain 

estimates over the continental U.S. to the GV-MRMS product. The KuPR product compares well to 

the GV-MRMS, but is most notably high biased (on average 25-30%) in the southern and central 

mid-section of the U.S.  In tandem, the GPROF product also displays a high bias, though more 

pronounced, in the mid-section of the U.S.  Conversely, over the eastern seaboard and neighboring 

Appalachian region, the GPROF is slightly lower than the GV-MRMS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. KuPR (top left) and GMI-GPROF (top right) 50 km gridded mean rate rates (mm hr-1) 

plotted against their matched sample of GV-MRMS (indicated as “Q3”) rain rates in bottom panels.  

While GPROF precipitation estimates over land do rely on DPR-retrieved precipitation profiles, the 

attribution of error in GPROF rain rate is complicated. This is because the algorithm is intrinsically 



 

related to underlying ice-scattering relationships to rainfall, land surface emission characteristics, 

forecast model analysis error and bias in relation to environment state, and even potential GV-MRMS 

matchup errors associated with parallax assumptions (e.g., Guilloteau et al. 2018). As is evident in 

Figure 10 (contrast behavior in the west to that of the central U.S.) the aforementioned rain and 

surface characteristics shift with geography (see also Kidd et al., 2018), and these are also likely tied 

to precipitation type/regime. On the other hand, understanding something about the underlying state 

of a given environment that supports a given rainfall regime can be used to improve the algorithm 

(e.g., Petkovic and Kummerow, 2017).    

 

4.2.2.4 Application to verification of GPM L1SRs 

 

As discussed previously, NASA’s GPM L1SRs (Sec. 1.1.2; Skofronick-Jackson et al., 2017) define 

specific measurement range and error standards for retrieved precipitation parameters such as rain 

rate and raindrop size distribution, and somewhat more binary requirements for the detection falling 

snow (as opposed to estimation of water equivalent rate).   Figures 3 and 5-8, while used to illustrate 

GV monitoring of the evolution of GPM product versions or evaluation of SWER, also provide robust 

examples of L1SR verification of GPM L2 products. As noted previously, Fig. 3 illustrates 

satisfaction of the GPM L1SR pertaining to Dm estimation sing VN GV data (Tokay et al., 2018).  

GV-MRMS data in Figs (6-8) confirm L1SR rain rate intensity ranges sampled at IFOV scales (e.g., 

5 km for the DPR, 15 km GMI- not shown) and consistency between GPM product versions.   

Figure 10 provides one example of GV-MRMS product use for examining bias and uncertainty errors 

between GV and GPM over CONUS for L1SR grid scales (50 km). Note that these maps are 

continuously updated as GV-MRMS datasets and GPM CO level-2 data are produced and 

downloaded and as GPM versions change. For the formal verification process for L1SRs, we 

conservatively selected a large sub-region of the central and southern Plains of the U.S. where GV-

MRMS beam heights and rain gauge density requirements 

were optimal. A comparison for this region is exhibited in 

Figure 11 for the GPM V6 Combined Dual-Frequency 

Radar-Radiometer algorithm. As illustrated in Skofronick-

Jackson et al. (2018) for V5, V6 also easily meets L1SRs 

over the CONUS region sampled.   

 

Figure 11.  GPM V6 combined radar-radiometer algorithm 

matched-swath rain rates (x-axis) vs. normalized error (%; 

y-axis) at 50 km grid scales over the CONUS L1SR region.  

Solid line is relative bias, dashed line is NMAE.  Green 

shading represents L1SR requirement (cf. Skofronick-

Jackson et al. 2018 for V5 result).  

 

As in Figure 9, Figure 11 shows a low bias (25%) for rain rates on the convective (> 5-10 mm hr-1) 

and light rain ends (<0.6 mm hr-1) of the rain rate spectrum.  Though under investigation at this time, 

candidate explanations for the low biases include a combination of impacts ranging from approaches 

to constrain the DSD in the algorithms (e.g., Grecu et al., 2016), non-uniform beam filling and/or 

possible multiple scattering impacts on correction of path integrated attenuation, related DSD biases 

observed in convective rain (e.g., Petersen et al., 2018), or incorrect assumptions about the functional 

form of the DSD applied at the light rain rate end of the spectrum (e.g., Thurai et al., 2017).    

In addition to comparisons reported for the CONUS (over land), we have also tested L1SRs over the 

ocean (e.g., Fig. 12). Here we selected two oceanic dual-polarimetric radar sites representing 

distinctly different regime types; i.e., tropical and mid/high-latitude climates. The radars and sites 

included the Kwajalein Atoll dual-pol (K-pol) radar operated by the U.S. Army (with a strong 

tradition of GV use during the NASA TRMM era; e.g., Marks et al., 2011), and the WSR-88D radar  



 

located on Middleton Island, Alaska (PAIH).  Both radars were selected for their relatively open view 

of the ocean at ranges of 100 km or greater.  Internal polarimetric consistency checks (cf. Marks et 

al, 2011), calibration adjustments (Wolff et al., 2015), and VN matched-volume comparisons of radar 

reflectivity between K-Pol, and GPM were used intermittently to monitor, verify and if necessary 

correct the reflectivity calibration on both platforms.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Similar to Figure 11 but for instrument footprint scales in the Kwajalein (K-pol; left), and 

PAIH (right) oceanic domains. The red line represents bias (%) and the blue line indicates normalized 

mean absolute error (NMAE; %) at EFOV scales.  The solid black line indicates the RMSE (%) for 

EFOVs scaled to 50 km using Steiner et al. 2003. 

 

The quality-controlled data were subsequently interpolated to a 1 km Cartesian grid, with gridded 

rain rate files containing rain estimates based on the aforementioned DP radar retrieval methods 

(Cifelli et al. 2011 used for Fig. 12). In contrast to Figure 12 and use of GV-MRMS over CONUS, 

because the number of 50 x 50 km grid boxes in a single 100 km radar–range domain is fairly limited. 

Hence, to demonstrate verification of L1SRs we use matched GV radar - GPM IFOVs. For each GPM 

overpass of a given site, the GV radar volume scan occurring closest in time to each overpass was 

identified and 1-km gridded rain rates at the 1 km height level located in each IFOV pixel were 

averaged. For the collection of matched pixels we then calculated the bias, root mean square error 

(RMSE), mean absolute error, and NMAE. To evaluate L1SR criteria we assumed that the bias 

computed at the IFOV scale does not increase at 50 km grid scales, that the L1SR uncertainties could 

be computed using RMSE computed for IFOV scales and scale-adjusted via Steiner et al., (2003).   

An example is shown in Figure 12 for the combined radar-radiometer algorithm matched-swath (MS) 

product.  The quality of the combined radar-radiometer algorithm meets L1SRs for estimation of the 

rain rate in both of the contrasting oceanic rain regimes.  However, there are differences in behavior 

between bias and uncertainty trends of the tropical and mid-latitude regimes of Figure 12, and 

similarly between the oceanic regimes and land regime sampled in Fig. 11. Considered with Figure 

10, these differences emphasize the non-global nature of rain rate retrieval errors in relation to the 

convergence of ground and space-based estimates of rainfall (cf. Kidd et al., 2018).  

In addition to rain rate and DSD, L1SRs also require that GPM CO instruments demonstrate 

“detection” of snow at GPM CO instrument IFOVs. Demonstration that GPM meets this L1SR has 

been accomplished several ways.  For example, we can directly compare ground-identified 

occurrences of snowfall coincident with satellite IFOVs (e.g., Figs. 5-6; see also von Lerber et al., 

2018). We can also use larger datasets such as the GV-MRMS to statistically determine the 

delineation of snow from rain when precipitation is detected by the GV-MRMS and the CO.  

Additionally, we can attempt to identify a lower GV-MRMS snow water equivalent rate (SWER) 

threshold defining the satellite detection capabilities.  For the latter two tests the Heidke Skill Score 

(HSS) has proven useful for managing the tradeoff between increasing the percentage of correct 

detections (snow versus rain for delineation, positive versus zero snow rate for detection) and 



 

minimizing misses.  An HSS value of one (zero) indicates perfect (no) contingency skill.  For GPM 

L1SRs, when considering the delineation of snow from rain computation of the maximum HSS 

suggests reasonable performance at values of ~0.65 and ~0.47 for the DPR and GMI, respectively. 

For evaluating the “detection” of snow as a function of estimated water-equivalent snowfall rate, the 

HSS is computed as a function of the detected reference water-equivalent rate (based on a Z-S of Z = 

75*S2, random error suspected to be large). Maximizing the HSS enables us to identify the 

approximate lower threshold SWER for snow detection and to evaluate this model.  Using this 

approach the maximum HSS=0.65 for the CO and occurs at a water equivalent rate of 0.53 mm hr-1 

for the DPR MS product.  The maximum HSS for the GPROF GMI product is 0.34 at a rate of ~0.6 

mm hr-1.  Both DPR and GMI GPROF HSS appear to exhibit some very limited skill down to an 

SWER of ~0.3 mm hr-1. Interestingly, the HSS-based SWER threshold values of 0.5 to 0.6 mm hr-1 

for the GMI are similar to those computed in previous theoretical work conducted by Skofronick-

Jackson et al. (2013). You et al. (2016) presented probability of detection results for the GMI that are 

consistent with our results- demonstrating GMI radiometer detection capability maximized by use of 

the higher frequency 166 GHz channel. Though numerous ways exist to approach the problem, GPM 

satisfies its L1SR for snow detection. 

 

4.2.3 Physical Validation Activities 
 

Physical validation (PV) datasets originate from a plethora of pre and post-launch GPM GV field 

campaigns (Table 1.3). Data to validate retrieval algorithm assumptions and methodologies have been 

collected for a range of precipitation regimes and types. In the broadest sense PV data necessarily 

include most, if not all of the ground-based direct-statistical datasets discussed above (including 

processing), for both rain and snow regimes, with the important distinction that almost all PV datasets 

(except WFF, the Iowa Flood Studies campaign) also include high-altitude airborne (ER-2, DC-8) 

remote sensing data, airborne microphysical measurements, and supporting sounding profiles of 

atmospheric thermodynamic state (e.g., Skofronick-Jackson et al., 2015, Jensen et al., 2016, Houze 

et al. 2017).  Airborne remote sensing datasets collected in PV campaigns serve as “proxy GPM 

satellite measurements” and depending on the siutation, were coordinated with GPM overpasses when 

possible. The PV datasets generally include coincident downward looking multi-frequency radar 

collections at all or several of W, Ka, Ku, and X-band frequencies, and passive microwave radiometer 

data covering the 10-183 GHz frequency ranges. In situ airborne microphysical data were collected 

in coordination with remote sensing and ground-based instruments and used standard suites of 

microphysical probes that span measurement scales of aerosol (0.1 m) to large hydrometeors (2 cm). 

Airborne and ground-based PV data have supported a variety of algorithm applications related to the 

physics and spatial variability of rain DSDs (e.g., Williams et al., 2014, Liao et al. 2014, Bringi et al., 

2015, Gatlin et al., 2015, Thurai et al., 2017, Zagrodnik et al., 2018, Tokay et al., 2017, 2018) to 

include regime variability (Dolan et al. 2018), radar multiple-scattering and detection of the multiple 

scattering “knee” at DPR frequencies in strong convection (Heymsfield et al., 2014; Battaglia et al., 

2014, 2016), ice hydrometeor profiles and radiometer response (Leppert et al., 2015), and ice and 

snow scattering at multiple radar frequencies (Molthan and Petersen, 2011, Olson et al., 2014, Kneifel 

et al, 2015; Chase et al., 2018; Leinon et al. 2018). PV datasets have also supported development of 

new GV methods for radar calibration (Wolff et al., 2015, Louf et al., 2018), creation of multi-

parameter rain rate reference products (Seo et al., 2018), and multi-dataset fusion and analysis (e.g., 

Wingo et al., 2018).  New analyses relative to snowfall estimation include reference estimation of 

bulk snow density and snow water equivalent rates (e.g., Huang et al., 2015, von Lerber et al., 2018) 

and the potential limitations of snow water equivalent rate estimation using passive microwave 

(Skofronik-Jackson et al., 2013).  Finally, the field data have supported tests of cloud resolving model 

physics (e.g., Tao et al., 2013; Lang et al., 2014, Iguchi et al, 2014, Tao et al., 2016, Colle et al., 

2017), and column microphysical impacts on satellite remote sensing simulators (Matsui et al., 2013). 

 



 

Data from GPM PV campaigns are archived at the NASA Global Hydrology Resource Center 

(GHRC) and can be found at https://ghrc.nsstc.nasa.gov/home/field-campaigns. 

Table 1.3. NASA physical-validation field deployment efforts. Partners indicated in the first column 

[FMI- Finnish Meteorological Administration, UH- University of Helsinki; DOE- U.S. Department 

of Energy; ECCC- Environment Climate Change Canada].  HIWRAP= High Altitude Imaging Wind 

and Rain Airborne Profiler, EXRAD- ER-2 X-band Radar, CRS- Cloud Remote Sensing radar, 

CoSMIR- Conical Scanning Millimeter Imaging Radiometer, AMPR- Advanced Microwave 

Precipitation Radiometer, DoW- Doppler on Wheels, CPL- Cloud Physics Lidar, AirMSPI- Airborne 

Multi-angle Spectro Polarimetric Imager, eMAS- extended MODIS Airborne Simulator. Also see 

Skofronick-Jackson et al., 2018, (their Table 4).  

 

In addition to the larger campaigns mentioned in Table 1.3, the NASA GV effort has deployed 

instrumentation in several international-led campaigns, most recently the International Collaborative 

Experiment–PyeongChang Olympics and Paralympics Experiment 2018 (ICE-POP 2018) led by the 

Korean Meteorological Administration to study heavy orographic snow. 

  

4.2.4 Validation of the GPM IMERG Product 
 

The NASA GV team conducts routine verification of IMERG Early (E), Late (L) and Final (F) 

products.  Accordingly, herein we provide a few examples of analysis types routinely conducted for 

two geographic regions (Korea and CONUS) and for one extreme event, Hurricane Florence.  

Because IMERG is such a popular product, many other examples of IMERG validation and analysis 

are available in the broader community for different areas of the world (e.g., Tang et al., 2015, Tan 

et al., 2017a, Desfuli et al., 2017; O et al., 2017, Rios-Gaona et al. 2017, O and Kirsetter, 2018).   

IMERG can be briefly described as a global gridded precipitation product that unifies microwave 

measurements from the GPM network of satellites with geostationary VIS/IR sensors sampling at 

higher temporal and spatial resolution (cf. Huffman et al., 2018).  IMERG covers latitudes of 60o 

with high resolution 0.1o spatial and 30 minute temporal sampling.  To accommodate various user 

requirements for data latency and accuracy, the IMERG is generated in the form of near-real-time 

(IMERG-E, and IMERG-L) and post-real-time research data that also incorporates a rain gauge-bias 

correction (IMERG-F). IMERG has undergone several episodes of development with many 

continuing improvements; here we examine Version-5b (V5b). Multi-scale validation of IMERG 

products for many versions and regions is essential to improving the product and its applications.  

GV datasets including the GV-MRMS L3 products for CONUS, and KMA Real-time Adjusted 

Radar-AWS Rain rate (RAD-RAR) hourly rain accumulations (Table 1.2) are used to conduct a 

Field Campaign 

(Partners) 

Description 

LPVEX 2010 

(NASA, FMI, 

UH) 

Light Precipitation Validation Experiment. High latitude cold rain over ocean and continental land surfaces. U. Wyoming King Air 

microphysics aircraft also carrying U. Wyoming W-band radar. FMI/UH C-band polarimetric radars, MRRs, radiometers, rawinsonde, 

snow video imager, disdrometer and rain gauge network. 

MC3E 2011 

NASA, DOE 

Mid-latitude Continental Convective Clouds Experiment. Warm-season mid-latitude convective and stratiform precipitation. NASA ER-2 

high altitude aircraft carrying HIWRAP Ka/Ku band radar, AMPR 10-85 GHz radiometer, UND Citation aircraft with microphysics suite, 

multi-frequency polarimetric radar network including NASA NPOL and DOE X/C-band radars, MRRs, dense rain gauge and disdrometer 

networks, high temporal resolution rawinsonde.. 

GCPEX 2012 

(NASA, ECCC) 

GPM Cold Season Precipitation Experiment. Mid-latitude synoptic and lake-effect snow.   NASA DC-8 aircraft carrying 50-183 GHz 

CoSMIR radiometer, APR-2 Ka/Ku band radar.  UND Citation microphysics aircraft, NRC C580 microphysics aircraft and W-band radar, 
C-band dual-pol radar, NASA D3R radar, MRR, Pluvio snow gauge and PIP network, rawinsonde. 

IFloodS 2013 

(NASA, U. Iowa) 

Iowa Floods Studies. Warm-season mid-latitude mesoscale precipitation events and hydrologic validation. NASA NPOL and D3R radars, 

U. Iowa X-band radars, extensive gauge and disdrometer networks, soil moisture network.  

IPHEx 2014 

(NASA, Duke U.) 

Integrated Precipitation and Hydrology Experiment.  Warm-season orographic precipitation and hydrologic validation, coastal oceanic 

precipitation.  NASA ER-2 carrying EXRAD, HIWRAP and CRS radars (X/Ka/Ku/W band), AMPR (10-85 GHz) and CoSMIR (50-183 

GHz) radiometer suite, NASA NPOL and D3R radars, MRRs, ACHIEVE W-band radar, extensive disdrometer and rain gauge networks.   

OLYMPEX 

2015/16 

(NASA, U. 

Washington) 

Olympic Mountains Experiment.  Cold season orographic and oceanic rainfall and snow; integrated hydrologic validation. NASA ER-2 

carrying EXRAD, HIWRAP and CRS radars (X/Ku/Ka/W bands), AMPR (10-85 GHz) radiometer, AirMSPI polarimeter, eMAS VIS/IR 

imager, CPL backscatter lidar; NASA DC-8 carrying APR-3 (Ku/Ka/W-bands) radar, CoSMIR radiometer (50-183 GHz), MASC 

radiometer (118, 183 GHz) and dropsondes. NASA NPOL and D3R radars, NSF DOW radar, ECCC X-band radar, MRRs, PIPs, extensive 

rain gauge and disdrometer network, high temporal resolution rawinsondes.  



 

variety of comparisons with IMERG. Due to differences in spatial and temporal resolution among 

products, the validation is carried out using an approach that matches and temporally resamples 

specific GV and IMERG data to common grids (nominally 0.1°, and either 30 minutes for GV-

MRMS, or 1-hour for RAD-RAR); missing data are excluded. Standard statistical metrics such as 

Correlation Coefficient (CC), Relative Bias (Bias), NMAE, NRMSE are used to quantitatively 

compare the performance of IMERG products. Comparisons between IMERG and the ground 

reference are conducted for individual extreme events (e.g., hurricanes), regional to continental 

spatial, and diurnal to multi-annual temporal scales. Common approaches using probability density 

and cumulative density functions (PDF, CDF, respectively) for rain occurrence and volume, scatter 

density plots, time series of daily rainfall, and instantaneous hourly rainfall are routinely produced.  

To evaluate precipitation detection capability, three widely applied categorical statistical metrics are 

also employed in the analyses: Probability of Detection (POD), False Alarm Ratio (FAR) and Heidke 

Skill Score (HSS). Contributions to errors are also evaluated as a function of the estimator type (e.g., 

IR or passive microwave), and fraction of contribution to the relative bias is examined by partitioning 

error into hit, miss and false alarm biases. A full collection of IMERG analyses with updates as new 

data are received can be viewed at the NASA GPM-GV website https://gpm-gv.gsfc.nasa.gov/.   

 

4.2.4.1 Examples of IMERG validation over South Korea    

 

Validation of IMERG using Korean RAD-RAR data is performed over the latitude/longitude box 

region enclosed by [124.5 oE-130.5 oE, 32.5 oN-39 oN].  Results herein focus on a commonly available 

period from March 2014 to October 2017. All data are resampled to 0.1o/1-h resolutions. The NASA 

GV team routinely updates results at: https://wallops-prf.gsfc.nasa.gov/KoreanQPE.V05/index.html.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. March 2014 to October 2017 V5b IMERG vs. RAD-RAR statistics for Early (IMERG_E), 

Late (IMERG_L), Final without gauge adjustment (IMERG_F_U), and Final with gauge adjustment 

(IMERG_F_G). Top panels: Pearson correlation coefficient(Correlation), Bias (%), NMAE, and 

NRMSE. Bottom: contigency scores for hits (green), misses (light blue), false alarms (purple), and 

correct negatives (black).  POD, FAR and HSS are also indicated. 

 

Categorical statistics (Figure 13) suggest that IMERG products compare reasonably well with the 

RAD-RAR over the region of South Korea as a whole. IMERG-F appears to be in the best agreement 

with the RAD-RAR in terms of correlation and POD. The expected improvement in skill between the 

IMERG-E and L products is also evident, likely due to the inclusion of more microwave data and 

forward/backward morphing in IMERG-L. It is interesting to note that IMERG-E and IMERGL 

outperform the gauge bias-corrected IMERG-F, at least in terms of relative bias and uncertainty. 

Indeed, Figure 14 suggests that monthly gauge-adjustments in the IMERG-F enhance disagreement 

with the RAD-RAR, increasing overestimation of precipitation rates- especially along the orography 

and coastline of the eastern Korean Peninsula. This is further demonstrated in Figure 15 when the 



 

bias errors are decomposed into hit, miss, and false precipitation errors. Figure 15 suggests that the 

IMERG hit-bias is the primary driver of the bias error pattern for the period examined. 

  

 

 

 

 

 

 

 

 

 

 

Figure 14. Difference in daily rainfall between RAD-RAR and IMERG-E, L, F-U and F-C, products. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Error components of IMERG-F V5b Final for March 2014 – October 2017 broken down 

by total bias (E ), hit bias (H ),  biases due to missing precipitation (M ), and false precipitation (F ).  

 

4.2.4.2 Select Examples of IMERG validation over CONUS 

 

For verification studies of IMERG over CONUS we use half-hourly gauge-adjusted GV-MRMS rain 

accumulations at 0.01o resolution (e.g., Tan et al, 2017a, O and Kirstetter, 2017).  The comparisons 

are conducted at various spatial and temporal scales with respect to different precipitation intensities, 

and filtered with GV-MRMS radar quality index (RQI) thresholds as needed. As a first example, 

consider the scatter-density plots of Figure 16. These plots demonstrate both the general performance 

of IMERG vs. GV-MRMS, but also enable tracking of performance between versions.  Figure 16 

demonstrates the improved performance of IMERG-L in V5b relative to V4 and GV-MRMS. The 

discretization of IMERG values in V4 is associated with the presence of underlying rain rate modes 

that existed in V4 of the the passive microwave GPROF estimates. This issue was fixed in GPROF 

V5.  Figure 16 suggests IMERG V5 exhibits a slightly high bias for rain rate values greater than ~1 

mm hr-1 when considered at CONUS scale. Figure 17 suggests that the bias indicated in Figure 16 

may be due to enhanced false-alarms over the central U.S. combined with hit-bias reflecting IMERG 

sensitivity to underlying passive microwave estimates observed over the central portions of the U.S. 

(e.g., Fig. 10). 

Of great interest to the applications community is the relative performance of IMERG in extreme rain 

events. Accordingly, we provide an example here of GV-MRMS use for evaluating the performance 

of IMERG in estimating rain accumulations associated with the land-fall of Hurricane Florence.  

Florence made landfall near Wrightsville Beach, North Carolina (NC) on September 14, 2018 as a 

Category-1 hurricane on the Saffer-Simpson scale. However, Florence stalled along the Carolina 



 

coastline just prior to and during its landfall, resulting in several days of excessive rain that occurred 

over a persistant storm surge- the combined effect being extensive and record-setting flooding.   

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 16. CONUS-wide comparisons of V04A (left) and V5b (right) IMERG-L 30 minute rain rates 

to GV-MRMS for the year of 2015.  

 

 

 

 

 

 

 

  

Figure 17. As in Fig. 14, but CONUS IMERG-L compared to GV-MRMS June 2014 – August 2017.  

 

 

 

 

 

 

 

 

 

 

 

Event total rainfall measured at one gauge location near Elizabethtown in southeastern NC exceeded  

 

 

Figure 18.  Hurricane Florence total rain accumulation (mm) for September 10 – 16, 2018.  Totals 

for the GV-MRMS, IMERG-L, and the difference in accumulation between the two (MRMS-

IMERG) are displayed in the left, center and right panels, respectively.  The location of the maximum 

accumulations for GV-MRMS and IMERG are indicated by the dark circle.  

 

900 mm, and more than 850 mm was measured at one gauge along the NC central coastline.  An 

example of the GV-MRMS and IMERG-L product total rain accumulation for a seven-day period 

bracketing the period of heaviest rain over the Carolinas (10-17 September) is shown in Figure 18 



 

together with a map of the difference in accumulation between GV-MRMS and IMERG.  The GV-

MRMS maximum accumulations are located in approximately the right locations relative to reported 

rain gauge maxima. The GV-MRMS maximum was 890 mm, close to that of gauge reports. In 

contrast, the IMERG-L maximum accumulation was located offshore at a value of 862 mm (~120 

mm larger than the IMERG-E estimate, not shown).  It is clear from the difference field in Figure 18 

that the IMERG-L bias structure was affected by the bands of the hurricane and associated training 

precipitation features along those bands.  IMERG estimated much lower rainfall than the GV MRMS 

in bands located over southern NC and larger amounts in a band located over northern NC and 

offshore (some of the apparent bias 150 km or more offshore may be the result of GV-MRMS radar 

estimates overshooting precipitation at distant ranges).  Another interesting bias feature in the 

difference plot of Figure 18 is the prominant band of low bias long the foothills of the Appalachian 

Mountains.  Here IMERG appears to have underestimated an orographically-forced  component of 

the rainfall that was detected by GV-MRMS radars and gauges.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19.  As in Figs. 6-7, but 30 minute rainrates for domain of Fig. 16 for IMERG “Precipcal” 

(left), HQPrecip (microwave; center), and IR (right) during Hurricane Florence.  

 

Figure 19 focuses on the contribution of two primary rain estimators to the IMERG calibrated 

precipitation estimate for Florence (“Precipcal” variable in the data files).  Here there is a tendency 

for the microwave estimates to be slightly positively biased, but even more clear is the tendency for 

IR estimates to be very low biased.  The observed trend of low IR-bias for Florence is also consistent 

with that noted by our team for other hurricanes such as Harvey, Irma and Michael (not shown).  

Further decomposition of error components by estimator will likely illuminate shortcomings and 

potential pathways to improve IMERG.  

 

4.2.5 Summary and Moving Forward 
 

The NASA GV team has successfully constructed high-quality “bread and butter” tools such as the 

GV-MRMS and VN for accomplishing fundamental direct validation and forged international 

collaborations for analysis of precipitation datasets in a variety of regimes. The team developed multi-

parameter radar and supporting gauge and disdrometer instrument infrastructue and a “home base” to 

operate instruments in a supersite. During the pre and post-launch GPM phases GV planned and 

executed numerous field campaigns deploying supporting instruments on the ground and in the air. 

These physical validation datasets provided data enabling confirmation of basic approaches to DSD 

retrieval, scattering impacts on higher radar and radiometer frequencies, and basic variability of rain 

and snow properties to include applications in cloud modeling.  In the post-launch phase, the GV 

team has been able to demonstrate conformance of GPM core observatory measurements to L1SRs,  

and provided data and analysis for numerous other applications ranging from multiple scattering and 

hail detection, drop size distribution issues in convection, and falling snow measurement.  Moving 

forward, GPM GV will continue to improve reference measurements of SWER for use in radiometer 



 

and radar algorithm retrieval testing and verification. GV will work to improve measurements and 

representation in algorithms of light rain, conduct more refined studies and resolution of the impacts 

of non-uniform beam filling on multiple physical aspects of precipitation retrieval- especially in 

convection.  Continuing emphasis will be placed on investigating orographic precipitation structure, 

variability, and environmental controls, especially as they pertain to the coupling of remote sensing 

and algorithm retrieval methodologies. A renewed emphasis will be placed on validation of IMERG 

products, especially in the context of integrated hydrologic validation.  
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