

Human Research Program

Medical Data Architecture (MDA) Project Status

M. Krihak, M. Gurram, S. Wolfe, N. Marker, S.-C. Lin, B. Schmitt, S. Winther, K. Ronzano, W. Toscano, and T. Shaw

2019 NASA Human Research Program Investigators' Workshop 23 January 2018

ExMC Risk and Gap

Human Research Program

ExMC Element Risk

Risk of Adverse Health Outcomes & Decrements in Performance due to Inflight Medical Conditions

MDA Need

ExMC Gap Med07: We do not have the capability to comprehensively process medicalrelevant information to support medical operations during exploration missions.

MDA Goal

The MDA project will develop capabilities that support autonomous data collection, and necessary functionality and challenges in executing a self-contained medical system that approaches crew health care delivery without assistance from ground support.

Data System – Central to the Crew Health and Performance (CHP) System

MDA Project Objectives

Human Research Program

The core focus of the Medical Data Architecture prototype developments is to inform ExMC Systems Requirements definition through

- Technical design and implementation
- Analysis and trade studies
- Systems engineering

MDA Reference Architecture

: User Interface Layer : Browser	
: Services Layer	
: Data Services Interfaces	
: Data Storage Layer	
: Structured Data : Time Series Data	: Unstructured Data
: Data Processing (Integration Layer)	
: Data Ingestion	: Data Security
: Exercise : Biosensors : Medical Imaging	: Role-Based Access Control : Data Encryption
: Data Source Layer	
: Exercise/OnePortal : Medical Imaging/DICO	M : Biosensor/Astroskin
: Infrastructure Layer	
: Virtual Machine	

iPAS Demonstration and Habitat Testing

Objectives

- Exercise file transfer from One Portal software into the MDA system and display medically-relevant exercise data
- Ultrasound file transfer from ultrasound device into the MDA system and display DICOM formatted images from the ultrasound file
- Synchronize the data between the MDA flight system and the mirrored MDA ground system
- FY 19: Deploy same configuration in habitat assessments.

https://www.nasa.gov/deep-space-habitation/overview https://www.nasa.gov/press-release/nasa-selects-six-companies-to-develop-prototypes-concepts-for-deep-space-habitats Integrated, Power, Avionics and Software Test at NASA JSC

MDA Project

Human Research Program

Ames Research Center

Conceptual Deep Space Habitats

MDA Software Demo

FY19 Approach for MDA

Human Research Program

MDA Test Bed 3 Approach

- Build of Test Bed 1 and 2 prototypes
- Wireless data streams from the Canadian Space Agency (CSA) On-Astronaut Wireless Sensor System
- Integration with the Flexible Ultrasound System
- Analytics layer and plug-in support
 - CSA Data Processing and Analysis plug-in integration
 - Autonomous Medical Operations integration: Image Analysis
- Further integration with the vehicle environment through iPAS and core Flight Executive system
 - Core Flight Software app

