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Abstract: In this paper, we review the use of satellite-based remote sensing in combination with in
situ data to inform Earth surface modelling. This involves verification and optimization methods that
can handle both random and systematic errors and result in effective model improvement for both
surface monitoring and prediction applications. The reasons for diverse remote sensing data and
products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant
information content, and (iii) their ability to complement in situ observations, which are often sparse
and only locally representative. To improve our understanding of the complex behavior of the
Earth system at the surface and sub-surface, we need large volumes of data from high-resolution
modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity
and discontinuities in space and time. The spatial and temporal variability of the biosphere,
hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data
attaining volumes previously considered prohibitive. We review data availability and discuss recent
examples where satellite remote sensing is used to infer observable surface quantities directly or
indirectly, with particular emphasis on key parameters necessary for weather and climate prediction.
Coordinated high-resolution remote-sensing and modelling /assimilation capabilities for the Earth
surface are required to support an international application-focused effort.

Keywords: earth-observations; earth system modelling; direct and inverse methods

1. Introduction

The era of information technology and advances in high-performance computing are opening up
possibilities to realistically simulate the evolution of the Earth system at scales not thought possible
before. In hydrology, this has been labeled hyper-resolution, referring to a finer spatial discretisation
than what was previously attempted at global scale [1-3] and it has triggered a fruitful debate on the
importance of information-driven advances [4,5]. The debate is partly about the resolution and model
complexity needed to resolve and represent regional-scale water-cycle processes [6-8]. In weather and
climate studies, calls for higher resolution have also been made [9,10], as currently unresolved cloud
processes are one of the obstacles for improved climate predictions. Attaining these finely resolved
scales with the entire Earth System including the land, atmosphere, oceans and ice surfaces involves
major technological advances in scalability [11] due to computing energy barriers, time-to-solution
requirements, and hardware/software limitations. In this review, we emphasize the essential role of
Earth Observations data from polar orbiting and geostationary satellites as a key driver for advancing
models, and we present a number of examples of how satellite data combined with in situ observations
have successfully driven model improvement. A global kilometric representation of the Earth surface
that can feed into the next generation of weather and climate models will have to be driven by satellite
observations [12,13]. The expected increased use of subseasonal-to-seasonal (52S) forecasts [14] makes
it even more important to improve the representation of the land and ocean surface in current models,
given the essential role of land—ocean—atmosphere interactions in S2S predictability. Such an ambitious
goal can be achieved only via the synergistic development of models and model-data fusion techniques
that make use of the wealth of satellite observations, ingested into the modelling chain, to genuinely
characterize the details of land physiography, coastal and inland water and all surface heterogeneity
that impacts water and energy fluxes. The drive to achieve physical realism in Earth surface modelling
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is common to hydrological and environmental applications [15] and resolution and model complexity
are key ingredients. Not all surface variables can be observed routinely and constraining most
sub-surface properties remains challenging. Therefore, the representation of uncertainties is essential
in forecasting applications [16].

Information on the parameters necessary to describe the thermal, radiative, and hydrological
properties of the surface must also be extracted, and uncertainties evaluated, so that the models
can predict the main reservoirs and fluxes for water, energy and mass exchanges. The availability
of stored energy and water within the Earth surface is further modulated by land use (such as
irrigation, agricultural practice, forest management) and sub-surface properties which drive the high
spatial heterogeneity. That is why there is a growing realization that human activities, impacts and
feedback need to be represented in models [17]. The projected increase in the occurrence of extreme
weather events (heatwaves, but also droughts and floods in some regions [18]) in connection with
global warming in the 21st century, combined with the proven fact of observed warming trends since
pre-industrial time [19], are both of global-scale and local relevance. The latest IPCC (Intergovernmental
Panel on Climate Change) assessment [18] indicates that further warming, even for only 0.5 °C of
global warming, would further increase the occurrence or intensity of warm spells on global scale, of
heavy precipitation in several regions, and of droughts in some regions; heavy precipitation associated
with tropical cyclones is also projected to increase with increased global warming. Similarly, the
fast-paced change observed for the cryosphere including the significant trends in both snow and
sea-ice cover [20-22] means that we need an improved account of surface thermodynamic processes
at the relevant scales in interaction with the diurnal cycle and synoptic variability. Observing and
simulating the response of land biophysical variables and the cryosphere to extreme events is a major
scientific challenge in Numerical Weather Prediction (NWP) and environmental applications, which is
relevant also in the context of climate change adaptation.

The modeling of terrestrial variables can be improved through the integration of observations.
Integrating observations into models covers several aspects: (1) the dynamic integration of observations
into models through data assimilation techniques, (2) the use of observations for model validation and
evolution and (3) the mapping of the model parameters used to characterize the representation of land
properties within the model (e.g., soil properties, land cover). Although the assimilation from satellite
data is becoming widely adopted in Earth system modelling also at the surface [23], limited use tends
to be made of the wealth of Earth observations (EO) data available for model validation, evolution
and parameterisation. There is a thus a great opportunity to improve upon current development
strategies. For example, it is well known that the use of indirect observations such as the near surface
temperatures to constrain model soil moisture [24] can lead to compensating errors. Remote sensing
can also greatly support model development for the cold processes associated with seasonal snow
cover. Snow is a key component of the Earth system due to the unique surface “shielding” properties
and its presence over large parts of the Earth’s surface. The radiative (albedo), thermal (insulation) and
mechanic (roughness) characteristics of a snow covered surface differ greatly from those of a snow-free
surface. While the particular microphysical characteristics of snow are challenging to represent in
models, they provide unique radiative signatures that can be explored by EO data. Remote sensing
observations are particularly useful in this context because they are now available for all parts of the
globe. However, most snow remote sensing products greatly benefit from in situ observations [25].
Many satellite-derived products relevant to the hydrological and vegetation cycles are already available
and the use of combined observing platforms is increasingly adopted in order to enable the move
towards the kilometer-scale and support global Earth surface modelling.

The focus of this review is to cover relevant successful examples, inspired by the National
Aeronautics and Space Administration (NASA) decadal survey [26] and by the World Meteorological
Organisation (WMO) Global Climate Observing System (GCOS) essential climate variable observing
capabilities [27,28], without aiming to be exhaustive. We present recent use of Earth Observations
data pertinent to constraining the surface energy, water and carbon cycles in models. We discuss
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their relevance for the next generation of surface models for Earth system monitoring and forecasting
applications, and we present options for closer collaboration and more rapid information uptake
between data providers and model developers. In Section 2, satellite and in situ observations of the
earth surface are listed with the relevant instruments information. Section 3 presents the Earth surface
model development examples over land and ocean. Section 4 presents some of the pathways in which
EO data guide enhanced global-scale local relevant monitoring and forecasting applications. Section 5
discusses how to increase EO data uptake in earth system modelling moving towards global km-scale,
including international coordination activities. Section 6 presented a summary and the outlook.

2. EO Satellite and In Situ Observations for Earth Surface

This section reviews the satellites and in situ platforms that have dedicated sensors for Earth
surface monitoring and that have been used to inform model development. Both surface dedicated
and surface sensitive instruments are considered.

2.1. SMOS Soil Moisture Ocean Salinity Mission

The Soil Moisture and Ocean Salinity SMOS mission [29-31] was launched on 2 November 2009.
This is an interferometric synthetic aperture radiometer mission that can measure the Earth’s natural
emission at a relatively low microwave frequency of 1.4 GHz in full-polarization and covering multiple
incidence angles from 0 to 60 degrees with angles in the 4045 range accessible all across the swath.
SMOS has 69 small static antennae that, thanks to interferometry, are equivalent to a filled antenna
of 8 m, achieving a spatial resolution on the ground ranging from 27 to 55 km. The satellite follows
a sun-synchronous polar orbit with 6:00 a.m. (ascending half-orbit) and 6:00 p.m. (descending
half-orbit) Equator overpass times. The mission provides global brightness temperature and retrieves
soil moisture fields in near real time [32,33]. The land products are also generated globally at 15 km
resolution with a latency of 24 h. These products are surface soil moisture, vegetation opacity, and
surface dielectric constant [30]. Level-3 and Level-4 are also produced [34] and cover a large range of
products [35,36], e.g., root zone soil moisture and drought index, L-Band Vegetation Optical Depth
(VOD, [37-39]), thin sea ice [40], global rainfall estimates [41], to name a few.

2.2. SMAP Soil Moisture Active Passive Mission

The Soil Moisture Active Passive SMAP mission [42], launched on 31 January 2015 carries both
an L-band (1.4 GHz) passive microwave radiometer and a radar (although the latter is no longer
functioning). Using a 6-m diameter spinning antenna, the observatory provides near-global coverage
every two to three days. The primary focus of the SMAP mission is on soil moisture retrieval and
freeze/thaw detection, but SMAP observations have also been used for ocean salinity [43] and wind
retrievals [44]. To provide estimates of root zone soil moisture and complete spatio-temporal coverage,
SMAP radiometer observations are routinely assimilated into the NASA Catchment land surface model
to generate the SMAP Level-4 Soil Moisture (L4SM) data product [45]. The L4SM product is generated
globally at 9 km resolution every three hours and distributed to the public with a latency of 2.5 days
from the time of observation.

2.3. TERRA/AQUA—MODIS

Terra and Aqua (Latin for land and water) are NASA Earth Science satellite missions equipped
with multi-sensors aimed at studying the Earth’s water cycle including evaporation from the oceans,
water vapor in the atmosphere, clouds, precipitation, soil moisture, sea ice, land ice, and snow cover
on the land and ice. Terra was launched in December 1999 and initiated data transmission in February
2000, with its five instruments, ASTER, CERES, MISR, MOPITT, and MODIS (see acronyms list for
details, page 55). Aqua was launched on 4 May 2002, and had six Earth-observing instruments on
board, AIRS, AMSU, AMSR-E, CERES, HSB, and MODIS, which are collecting a variety of global
data sets. Aqua was originally developed for a six-year design life but has now far exceeded that
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original goal. About half of the sensors continue transmitting high-quality, in particular from AIRS,
CERES, and MODIS, with reduced functionality from AMSU-A channels. AMSR-E became inactive
since 2011, with HSB, collected approximately nine months of high quality data but failed in February
2003. For both satellite platforms MODIS (Moderate-resolution Imaging Spectroradiometer) is a key
instrument with its 36 spectral bands ranging in wavelength from 0.4 um to 14.4 um and at varying
spatial resolution (two bands at 250 m, five bands at 500 m and 29 bands at 1 km). Together, the
instruments image the entire Earth every one to two days. A large amount of MODIS-based Earth’s
surface products are currently used in weather and climate modelling, as detailed in Section 2.

2.4. LANDSAT and Its Legacy

The Landsat program initiated with the launch of the first satellite in July 1972 and the latest
Landsat-8 launched in February 2013 is the longest-serving EO platform of high resolution mapping
satellites. Landsat-9 foreseen to launch in 2020 will continue this legacy that has allowed to monitor key
surface changes over time, including water-bodies changes, glaciers retreat, large fires, urbanization and
agricultural land expansions. Landsat 8 ensures the continued acquisition and availability of Landsat
data utilizing a two-sensor payload, Operational Land Imager (OLI) and Thermal Infrared Sensor
(TIRS). These provide imagery from 15 m to 100 m resolution and up to 700 scenes per day. Landsat
data volume is prohibitive for most research applications at global scale and often used in mapping
applications to produce more accurate medium resolution (e.g., at 1 km) as mentioned in Section 4.

2.5. SEASAT and Its Legacy

The Seasat was the first ocean dedicated satellite launched in June 1978 although it operated
only for 106 days. Earth-orbiting satellites such as TOPEX/Poseidon, and scatterometers on NASA
Scatterometer (NSCAT), QuickSCAT, all launched in the 1990s and Jason-1, launched in 2001, Jason-2,
launched in June 2008, and Jason-3 launched 17 January 2016 followed the initial mission and continued
its legacy. The MetOp and its successor MetOp-SG programmes are the current and future legacy to
enhance and expand the European EO capability.

2.6. Copernicus Sentinels

The Copernicus Sentinels program developed by the European Space Agency consists of a family
of missions designed for the operational monitoring of the Earth system with continuity up to 2030 and
beyond (Figure 1 and Table 1). The Sentinels” concept is based on two satellites per mission necessary
to guarantee a good revisit and global coverage and to provide more robust datasets in support of the
Copernicus Services.

On-board sensors include both radar and multi-spectral imagers for land, ocean and
atmospheric monitoring:

Sentinel-1 is a polar-orbiting, all-weather, day-and-night radar imaging mission for land and
ocean services. Sentinel-1A was launched on 3 April 2014 and Sentinel-1B on 25 April 2016.

Sentinel-2 is a polar-orbiting, multi-spectral high-resolution imaging mission for land monitoring
to provide, for example, imagery of vegetation, soil and water cover, inland waterways and coastal
areas. Sentinel-2 can also deliver information for emergency services. Sentinel-2A was launched on
23 June 2015 and Sentinel-2B followed on 7 March 2017.

Sentinel-3 is a polar-orbiting multi-instrument mission to measure sea-surface topography,
sea- and land-surface temperature, ocean colour and land colour with high-end accuracy and reliability.
The mission will support ocean forecasting systems, as well as environmental and climate monitoring.
Sentinel-3A was launched on 16 February 2016 and Sentinel-3B has been launched on 25 April 2018.

Sentinel-5 Precursor—Sentinel-5P—polar-orbiting mission is dedicated to trace gases and aerosols
with a focus on air quality and climate. It has been developed to reduce the data gaps between the
Envisat satellite—in particular the Sciamachy instrument—and the launch of Sentinel-5. Sentinel-5P is
orbiting since 13 October 2017.
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Sentinel-4 is devoted to atmospheric monitoring that will be embarked on a Meteosat Third
Generation-Sounder (MTG-S) satellite in geostationary orbit and it will provide European and North
African coverage.

Sentinel-5 will monitor the atmosphere from polar orbit aboard a MetOp Second
Generation satellite.

Sentinel-6 will be a polar-orbiting mission carrying a radar altimeter to measure global sea-surface
height, primarily for operational oceanography and for climate studies.

Figure 1. Copernicus Sentinels 1 to 6 (left to right).

Table 1. Copernicus Sentinels launch dates and relevance in modelling application (aggregate use
refers to composites in space and time, while direct use refers to single observation).

Sentinel 1 Launch Date ESM Relevance

Sentinel 1A 3 April 2014 aggregate
Sentinel 1B 25 April 2016 aggregate
Sentinel 2A 23 June 2015 aggregate
Sentinel 2B 7 March 2017 aggregate
Sentinel 3A 16 February 2016 direct
Sentinel 3B 25 April 2018 direct
Sentinel 5P 13 October 2017 direct
Sentinel 6 2020 (expected) direct

Future Sentinels missions include polar-orbiting satellites dedicated to support an anthropogenic
CO, monitoring capacity. In the longer term, thermal Infrared imagers with focus drought monitoring
and on polar regions are being planned, and a hyper-spectral instrument will enable more precise
agricultural monitoring.

Special focus here is given to the Sentinel-3 mission [46], jointly operated by the European
Space Agency (ESA) and the European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT), and which tackles precisely the scales of interest of our study and has operational
requirements. The objectives of Sentinel-3 are to measure sea-surface topography, sea- and land-surface
temperature and ocean- and land-surface color in support of ocean forecasting systems, and for
environmental and climate monitoring.

The Sentinel-3 satellites series ensures global, frequent and near-real time ocean, ice and land
monitoring, with the provision of observation data in routine, long term (up to 20 years of operations)
and continuous fashion, with a consistent quality and a high level of reliability and availability.
The Sentinel-3 mission addresses these requirements by implementing and operating the following
instruments, building on experience and heritage from the ERS and ENVISAT missions:

A dual frequency, delay-Doppler Synthetic Aperture Radar Altimeter (SRAL) instrument
supported by a dual frequency passive microwave radiometer (MWR) for wet-tropospheric correction,
and a Precise Orbit Determination package. This combined package provides measurements of
sea-surface height and topography measurements over sea ice, ice sheets, rivers and lakes.

A highly sensitive Ocean and Land Colour Imager (OLCI) delivering multi-channel wide-swath
optical measurements for ocean and land surfaces. With 21 bands (compared to the 15 on Envisat’s
MERIS) and a design optimised to minimise sun-glint, OLCI marks a new generation of measurements
over the ocean and land attaining a resolution of 300 m over all surfaces.
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A dual-view Sea and Land Surface Temperature Radiometer (SLSTR) delivering accurate surface
ocean, land, and ice temperature, with an accuracy better than 0.3 K. SLSTR measures in nine spectral
channels and two additional bands optimised for fire monitoring. SLSTR has a spatial resolution in the
visible and shortwave infrared channels of 500 m and 1 km in the thermal infrared channels. The swath
of OCLI and nadir SLSTR fully overlap.

Sentinel-3A and 3B were launched in February 2016 and April 2018, respectively. Full performance
will be achieved once both Sentinel-3A and 3B will be in routine operations at the end of 2018, with a
revisit time of less than two days for OLCI and less than one day for SLSTR at the equator. The satellite
orbit provides a 27-day repeat for the topography package, with a 4-day sub-cycle (defined as the
minimum number of days after which the ground track of the satellite nearly repeats itself within a
small offset).

The Sentinel-3 ground segment systematically acquires, processes and distributes a set of
pre-defined core data products to the users (see https://earth.esa.int/web/sentinel /missions/sentinel-
3/data-products).

An example of the sensor capability is given in Figure 2 for land surface temperature, vegetation
state (chlorophyll index) and snow cover.

Figure 2. Sentinel-3 derived kilometre-scale products for Earth System Modelling. (top) SLSTR Land
Surface Temperature monthly composite for September 2016 (Credit: D. Ghent, University of Leicester)
(middle) OLCI Terrestrial Chlorophyll Index April-May 2017 (Credit: University of Southampton-J.
Dash/Brockman Consult (S3-MPC)) (bottom panel) SLSTR Snow Extent Product, 5-10 April 2018
(Credit: ENVEO). Copyright: All figures contain modified Copernicus Sentinel data (2018), processed
by ESA, CC BY-SA 3.0 IGO.
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2.7. GOES, METEOSAT and Other Geostationary Satellites

Geosynchronous satellites have the great advantage of orbiting with the Earth’s rotation and
therefore of providing observations of the same location at high temporal frequency. Such capability is
particularly relevant for the estimation of variables rapidly changing with time over land and ocean
surfaces. EUMETSAT currently operates four satellites of the Meteosat Second Generation (MSG)
series over Europe and Africa (Meteosat-9, Meteosat-10 and Meteosat-11) and over the Indian Ocean
(Meteosat-8). The redundancy over the former (nominal 0°E) disk allows a full disk service together
with a rapid scan service over Europe, keeping one satellite as backup. MSG series observations are
available for more than 14 years, since 2004. If combined with Meteosat First Generation satellites,
these can be extended back in time to the early 1980s, despite the poorer spatial and temporal samplings,
as well as lower spectral resolutions of that series.

The National Oceanic and Atmospheric Administration, NOAA’s operating strategy calls for two
GOES satellites to be active at all times, one satellite to observe the Atlantic Ocean and the eastern
half of the USA, and the other to observe the Pacific Ocean and the western part of the country.
GOES-16 (or GOES-East) positioned at 75°W longitude and GOES-15 (or GOES-West) positioned at
135°W longitude are currently, the two operational meteorological satellites in geostationary orbit
over the equator operated by NOAA. GOES-16 replaced GOES-13 on 8 January 2018 and GOES-15
replaced GOES-11 on 6 December 2011. Additionally, GOES-13 located at 60°W supports Central and
South America to prevent data outages during the GOES-16 rapid scan operations, while GOES-14 is
maintained as on-orbit spare to replace either, GOES-15 or GOES-16, in the event of failure.

Russia’s new-generation weather satellite Elektro-L. No.1 (GOMS-2) operates at 76°E over the
Indian Ocean. India also operates geostationary satellites called INSAT-3D which carry instruments for
meteorology. China currently maintains three Fengyun geostationary satellites (FY-2E at 86.5°E, FY-2F
at 112°E, and FY-2G at 105°E) in operations, while Japan maintains MTSAT-2 (very similar to GOES
satellites prior to GOES-16) located over the mid Pacific at 145°E (although inactive since 10 March 2017)
and the Himawari-8 (with instruments similar to GOES-16/17) at 140°E. Table 2 provides an overview
of geostationary satellite series launched until this day and their main coverage area.

Table 2. Geostationary satellites operated positions as of 2018. Operational position can vary over time.

. . Operating
Geostationary Satellite Agency Longitude Area Coverage
Meteosat First Generation seri 0°E; Africa, Eur rtly South
eteosat First Generation series EUMETSAT 57°E-63°E; ica, Europe, partly Sou

(up to Meteosat-7) 50°W America; Indian Ocean Coverage

MSG series (Meteosat-8 to 0°E; 9.5°E; Africa, Europe, partly South

Meteosat-11) EUMETSAT 45°E America ; Indian Ocean Coverage
East Satellite: North and South

OTAT. o America, Atlantic Ocean; West

GOES-East/West NOAA 75°W; 135°W Satellite: North and South America,
Pacific Ocean

GOMS-2 Roshydromet  76°E Eurasia, Indian Ocean

INSAT-3D ISRO 82°E Asia, Indian Ocean

FY-2 CMA fi’ZSOEEI 105°E; Asia, Indian Ocean, Australia
Asia, Indian and Western Pacific

MTSAT-2 JMA 145°E Ocean, Australia (inactive since
10 March 2017)

Himawari IMA 140°F Asia, Indian and Western Pacific
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Accurate derivations of land surface temperature and land surface emissivity from satellite
measurements are difficult because the two variables are closely coupled. At the very surface,
the land surface temperature is characterised by a strong diurnal cycle that is driven by solar
radiation and is dependent on the exact sensing depth and thermal properties of soil and vegetation.
Geostationary observations with temporal samplings ranging between 30-min (earlier satellites) and
10-min are particularly suitable for monitoring variables with pronounced diurnal cycles, with the
exception of the polar regions where revisit times of polar orbiters are generally short. The Spinning
Enhanced Visible and Infrared Imager (SEVIRI) onboard MSG takes top-of-atmosphere measurements
within 12 bands, every 15-min and with spatial sampling of at least 3 km at nadir. SEVIRI-based
retrievals of Land Surface Temperature (LST) can therefore capture the high spatial and temporal
variability (see Figure 3, as example), which in turn are closely linked to surface conditions, such as
vegetation cover and state, or soil moisture availability. LSTs (or equivalently Sea Surface Temperatures)
are usually derived from top-of-atmosphere thermal infrared measurements in the atmospheric
window, by correcting for the atmospheric absorption and emission and surface emissivity. Such
surface temperature estimates are fairly close to actual observations [47], though they are restricted to
clear-sky conditions and to the disk field of view. Multiple geostationary satellites can be combined to
extend coverage, maintaining a good temporal sampling.

The use of satellite LSTs to understand and improve the modelling of land-surface processes is
still largely under-utilised [13,48]. The LST spatial and temporal variability reflects changes in the
surface energy balance. The amplitude and phase of the LST diurnal cycle are strongly linked to net
radiation and turbulent energy flux partitioning at the surface [49], and to surface properties such as
surface wind, the surface type and vegetation state, soil moisture availability, amongst others.

2.8. Ground-Based Networks

A great wealth of Earth system observations are available to constrain land surface state.
These observations continue to grow in volume and diversity but gaps still exist for certain key
parameters (e.g., soil moisture, snow depth and river discharge). Despite their limited coverage and
limited expansion, in situ observations continue to be the backbone of the observing system used
by NWP land-surface applications. Some of the key in situ parameters used in NWP are: surface
pressure, 2 m temperature, 2 m humidity, snow depth, soil temperature and wind (see Figure 4).
They are mainly provided by the Synoptic Operations (SYNOP) and METeorological Aerodrome Report
(METAR) networks and by radiosondes. These observations are used to constrain the atmospheric
model, land-surface and snow analyses together. Large spatial gaps and representativity issues [50]
continue to affect soil moisture and snow observations. In addition, most variables are retrieved in
the atmosphere so that the constraint on the land surface is only indirect. Indeed, for instance, the
soil moisture updates reflect changes in the surface energy partitioning, which affects the atmosphere
(e.g., air temperature and humidity). Any incorrect physical representation between the surface (soil
moisture) and the atmosphere (fluxes) would lead to incorrect soil moisture inversion.



Remote Sens. 2018, 10, 2038 10 of 72

3 + Meteosat-10 + Himawari-8 LST (Jul2016 12UTC)

e & -
_‘ =
60°N .
40°N
20°N
0°
20°S
40°s
60°S
L1
80°5
160°W 120°W 80°W a0°w 0° 40°E 80°E 120°E 160°E
-5 0 5 10 15 20 25 30 35 40 45 50 55 60
55.0——r— LSTJU2016 OE30N 425, LSTJu2016 S0W105
5250 ..f.-\,. - . - T e R s s o s T
50,0 N-Africa I S0 I T 37500 America | ‘F‘“\
H < ° @ H o H
AT5 [ essanipsn frut st g e e s ] 350 e g Ny
Ld ® L] \
45.00 < . . | . it 1
' ° o ' ' ' ' Ll ' L)
425} = 4 B 3000 S . .
& ; ° ° 5y : : L
= 3750 . : . £ 25.00 - do . ]
ﬂ L] .. ﬂ 220 [ ..'
3500 Bl e o s 2215 o i e ot s s o
325} T T Y N e 20.04“‘~‘;- it R b e
30.0f T S IS (. - \‘“b B i e S I NP O R IR I e
2750 e O S Rt by ol e : .
25()"‘5,\'\.é: I 125 f b
, : .
225 L i L ol i i R STt LI PRy A A 10.0l I I i I I I i i I I i
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
utC uTC

Figure 3. Median Land Surface Temperature (LST, °C) for all 12 UTC LST estimates in July 2016,
derived from GOES-13, MSG/SEVIRI and Himawari-8 observations (upper panel; the circles mark the
respective 70° disks). The median LST diurnal cycle for July 2016 is shown in the lower panels, for two
pixels (desert landscape in Northern Africa, lower-left, and Savannah in South America, lower-right).

In the past five years, the number of observations available from the SYNOP (Synoptic
observations) and METAR (Meteorological Report at the Airports) has increased (Figure 5) thanks to
the inclusion of automatic data reports not previously considered.

Long-term, large scales networks of ground measurements are also of paramount importance.
For instance, detailed ground based soil moisture information is provided by in situ soil moisture
databases such as the International Soil Moisture Network (ISMN) [51]. Ground-based measurements
of soil moisture and temperature from ISMN [52-55] have been used to evaluate the European
Centre for Medium-Range Weather Forecasts (ECMWFEF) operational analyses, forecasts and reanalyses
ability to represent soil moisture and temperature. Verification studies using in situ networks
contribute to a better understanding of the deficiencies in models and point to processes that need a
better representation.
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Figure 4. Number of available observations per unit area of 1° x 1° from the SYNOP and METAR
networks in January, February and March 2018 for 2 m temperature (upper) and snow depth (lower).
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Figure 5. Daily global data counts from SYNOP and METAR observations. The sudden increase of
data counts in 2013 is related to the inclusion of existing METAR observations not previously sourced.

Particular attention must also be devoted to rainfall measurements, for which numerous datasets
exist combining in situ rain gauge observations from the SYNOP and SYNOP-like national networks
with satellite and ground-based remote sensing to obtained gridded products, as recently compared in
a study [56]. The combination of multi-sources observations with models to ensure meteorological
consistency is advocated as a way to increase accuracy. However, precipitation estimation for
hydrological applications remains a challenge and motivates the continuous effort of the International
Precipitation Working Group (IPWG), a permanent Working Group of the Coordination Group for
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Meteorological Satellites, active since 2001 [57]. Despite the effort of data collection of long term
precipitation observations e.g., [58], a precipitation dataset that can support climate change studies
and can be readily considered in reanalysis, remains largely unavailable. Earth system models also rely
increasingly on non-atmospheric ground-based observation networks including information on river
discharge from river gauging stations such as the databases held by the WMO Global Runoff Data
Centre (GRDC) and groundwater levels from wells. Such networks are notably at risk from decline in
network coverage and restricted national-scale data access [59]. More comprehensive coverage of the
in situ networks availability is included in the status report of the global observing system for climate
by GCOS in 2015 [60].

2.9. Ocean-Based Networks

The ocean in situ observations coordinated under the Global Ocean Observing System (GOOS,
http:/ /www.goosocean.org) is a sustained observing system, unified by the Framework for Ocean
Observing [61], designed to provide access to timely ocean observations. In many cases, data are
telemetered to data centers in near real-time for assimilation into NWP. Higher quality data are
also available in delay mode and can be used for validation and evaluation of processes. With its
unique status within the United Nations system, GOOS has been able to gather a network of
independently-managed and independently-funded observing elements. The network includes Argo
floats [62—64], surface drifters [65], OceanSITES moorings (http://www.oceansites.org), and ships
(http:/ /www.jcommops.org/sot). GOOS surface Essential Ocean Variables include sea state, ocean
surface stress, sea ice, sea surface height, sea surface temperature, surface currents, sea surface salinity,
and ocean surface heat flux, with the turbulent heat flux typically measured as a bulk flux from
state variables.

3. Earth Surface Modelling Advances and Links with EO Datasets

In this section, we describe some of the progress that has been made over the last few years
in modelling that can be directly linked to EO data availability. For instance, advances in different
land-surfaces components introduced in the ECMWEF operational forecasts can be linked to availability
of key observational datasets. It is acknowledged that surface related developments need to be
discussed in the wider context of Earth system modelling. Common areas of development in
surface parameterisation going towards environmental applications are presented by clustering the
following groups: land-surface reservoirs, land-atmosphere fluxes, land-surface properties, inland and
open waters.

3.1. Land-Surface Reservoirs

The land surface is an important component of the Earth system and numerical weather prediction
and climate models are evolving continuously to include more of its natural complexity. The relevance
of an accurate description of the land surface for atmospheric modelling has been widely established
in the scientific community for over thirty years [66—69]. The land controls the partitioning of available
energy at the surface between sensible and latent heat fluxes, which in turn has a strong impact on the
atmospheric heat and moisture budgets, especially on diurnal time scales. The land also determines the
partitioning of available water between evaporation, drainage and runoff. The water fluxes and storage
terms interact with the land morphology forming lakes and rivers. The land surface influences weather
and climate on all time and space scales [70,71], and responds actively to modifications of weather
patterns and climate change [72]. The role of the land surface in Earth system models is to provide a
consistent description of the water, energy and carbon exchanges (between atmosphere, biosphere,
hydrosphere, and cryosphere) at various time scales ranging from hours to decades. Many sensitivity
studies have shown that the description of physical processes of continental surfaces can significantly
affect the prediction of meteorological variables such as precipitation, wind or temperature in the lower
troposphere [73-77]. Evapotranspiration directly affects weather parameters such as temperature,
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humidity, boundary layer development and clouds [78-82]. Furthermore, a strong feedback between
evaporation and precipitation exists which appears to be negative at the convective scale [83-86]
and positive at the continental scale [84]. This feedback involves soil water in the root-zone layer,
which is one of the most important variables controlling large-scale continental summer temperature
extremes [87,88].

The way land surfaces store and regulate water and energy fluxes is firstly controlled by soil
moisture in the unsaturated zone, snow, ground water, lakes and open water. Such water bodies
are de facto reservoirs of energy and water and have a “memory” much longer than atmospheric
components (on the order of a few days). Secondly, the energy and water fluxes are also controlled
by land use/management and biosphere [72], which are complex, heterogeneous and difficult to
characterize in practise. Modelling upgrades can be clustered in two areas of development:

e Enhanced realism of the representation of water and energy stocks in soil, snow and inland water
bodies, via parameterisations and physiography revisions.

o Improved fluxes for land-atmosphere energy and water exchanges, inclusion of natural and
anthropogenic carbon emissions, and improved river discharges.

These developments are summarised in the following subsections: soil, snow, vegetation
and river hydrology development are illustrated in light of the EO dataset that have guided the
model improvements.

3.1.1. Soil

Soil is a porous medium that can store water, energy and carbon and these can be exchanged with
the atmosphere and the oceans via transport mechanisms. The observations within the soil layer are
typically in situ measurements, while remote sensing data can only penetrate the top few centimeters;
therefore, a combination of satellite based and in situ based information is essential in constraining
soil models. The amount of water in the soil and its vertical distribution in the column are important
for the regulation of heat and water vapor fluxes towards the atmosphere and involves a range of time
scales from minutes to years in the coupled land-atmosphere system.

For example, at ECMWF, the Hydrology—Tiled ECMWF Surface Scheme for Exchanges over
Land (H-TESSEL, [89])—has included a revised soil hydrology developed and tested for the global
scale. These model developments were a response to known weaknesses of the TESSEL hydrology
as used in the ERA-Interim reanalysis: specifically the choice of a single global soil texture, which
does not characterize different soil moisture regimes, and a Hortonian runoff scheme which produces
hardly any surface runoff. Therefore, a revised formulation of the soil hydrological conductivity and
diffusivity (spatially variable according to a global soil texture map) and surface runoff (based on the
variable infiltration capacity approach) were introduced in the Integrated Forecasting System (IFS) in
November 2007, and is used in weather and sub-seasonal-to-seasonal forecasting applications and
climate reanalysis products at ECMWE.

The soil hydrology revisions involved the use of selected field sites as well as global atmospheric
coupled simulations and data assimilation experiments [89]. Figure 6 illustrates the impact of these
hydrology changes on the water budget of a number of European river catchments. H-TESSEL
increases the seasonal amplitude of the Terrestrial Water Storage (TWS, Figure 6) change due the
increased water holding capacity of the soil resulting from the new hydrological parameters and
soil texture. The H-TESSEL scheme compared better than TESSEL with the terrestrial water storage
dataset [90], which was derived as the residual of reanalysed atmospheric moisture convergence and
observed river catchment runoff and referred to as the Basin Scale Water Budget (BSWB) dataset.
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Figure 6. Monthly Terrestrial Water Storage (TWS) changes (left panel) for the Central European
catchments Wisla, Oder, Elbe, Weser, Rhine, Seine, Rhone, Po, North-Danube (the coverage is shown in
the right panel). The curves are for TESSEL (GSWP-2-driven, green line), H-TESSEL (GSWP-2-driven,
blue line), TESSEL in ERA-40 (black dashed line). The red diamonds are the monthly values derived
from atmospheric moisture convergence and runoff for the years 1986-1995 in the BSWB dataset [90].

Bare ground evaporation was improved by adopting a lower soil water content threshold for
evaporation than the one used for vegetation. The most right panel of Figure 7 shows the difference
in Root Mean Square Error (RMSE) of soil moisture between the revised model and the old model.
RMSE is computed with respect to in situ measurements of soil moisture over the United States of

America [54].
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Figure 7. Mean soil moisture in the ECMWEF model (August 2010), before (BEVAP OLD, upper left)
and after (BEVAP NEW, upper right) the bare soil evaporation revision, evaluated using the US in situ

soil network (lower left) to calcuate the difference in soil moisture Root Mean Square Error when using

the revised bare soil evaporation threshold instead of the old model version (curve with dots, lower

right)). The solid curve indicates the number of in situ observations in each of the bare soil fraction
classes. For further details, see Figures 1, 2, 4 and 5 in [54].
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The new bare ground H-TESSEL evaporation formulation resulted in more realistic soil moisture
values when compare to in situ data, particularly over dry areas. Considering ground measurements
sites where fraction of bare ground was greater than 0.2, The Root Mean Squared Difference (RMSD)
of IFS’s soil moisture with the observations decreased from 0.110 m® m~ to 0.088 m® m 3.

Figure 7 illustrates the impact of the new parameterisation on soil moisture over the USA. The old
and new schemes (first and second panel from the left) shows the August soil moisture in the western
part of the USA is much lower than with the old scheme. These changes correlate with the bare ground
fraction (third panel). This is clearly beneficial, as can be demonstrated by verification based on the
Soil Climate Analysis Network (SCAN) over the USA (see Figure 7 for the location of the stations).
The positive differences in the right panel of Figure 7 indicate a reduction of the root-mean-square error
(RSME) of soil moisture particularly at high bare ground fractions. A better match with Soil Moisture
and Ocean salinity (SMOS) satellite observations [53] reinforced the generality of the results obtained
from the in situ comparison, and confirmed once again the synergy of satellite and ground-based
observations for the model development.

At NASA, the Catchment land surface model [91] has been continuously developed for use
in the Goddard Earth Observing System NWP and reanalysis products [92] and the SMAP L4SM
product. The latter product in particular depends critically on the skill of the land surface model.
Some of the model developments prior to the launch of SMAP were focused on a revised set of soil
texture and soil hydraulic parameters [93], as well as on the calibration of the microwave radiative
transfer model that converts the modeled soil moisture and temperature values into L-band passive
microwave temperatures [94]. Within the L4SM assimilation system, these modeled radiances were
then confronted with the SMAP observations, with deviations between the modeled and observed
radiances resulting in adjustments to the modeled soil moisture [95].

Since the first release of the L4SM product in 2015, new input parameter datasets for land
cover, topography, and vegetation height were derived based on recent, high-quality satellite
observations [96,97]. Land cover inputs were updated using the GlobCover2009 product, which
is based on satellite observations from the Medium Resolution Imaging Spectrometer. Topographic
statistics now rely on observations from the Shuttle Radar Topography Mission. Finally, vegetation
height inputs are derived from space-borne Lidar measurements. Additionally, SMAP Level-2 soil
moisture retrievals [98] were used to calibrate a particular Catchment model parameter that governs
the recharge of soil moisture from the model’s root-zone excess reservoir into the surface excess
reservoir [99]. Specifically, the replenishment of soil moisture near the surface from below under
non-equilibrium conditions was substantially reduced, which brought the model’s surface soil moisture
better in line with the SMAP Level-2 soil moisture retrievals (not shown).

The benefits of this change are illustrated in Figure 8, which shows that the surface soil moisture
dynamics from the new model better agree than the old model with independent in situ measurements
at SMAP core validation sites [45].

Figure 8a shows an example of surface soil moisture time series for one such site at Little River,
Georgia, USA. Figure 8b quantifies the improvements across 18 sites. Between the old and new
model versions, the average correlation increased from 0.64 to 0.67 and the bias decreased from
0.032 to 0.017 m3 m~3, respectively, while the unbiased RMSE remains unchanged at 0.041 m® m~3.
The improved Catchment model version will be used in future versions of the L4SM product, thereby
resulting in an improved soil moisture data product.
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Figure 8. Surface soil moisture at Little Washita, OK, USA for two versions of the NASA Catchment
model (a). Average surface soil moisture skill (b) in terms of time series correlation (R), bias, and
unbiased root mean squared error (RMSE) (or standard-deviation of the error). Skill is measured vs. in
situ measurements from 18 SMAP core validation sites [45] and then averaged across the sites. The
improved model version (NRv7.2) uses updated land cover, topography, and vegetation parameters
based on remote sensing observations and was further calibrated using SMAP soil moisture retrievals.

3.1.2. Seasonal Snow Cover

Snow acts as a fast climate switch [100] with implications ranging from weather forecasts to
climate change projections. Among the main evidence of the importance of snow in the Earth System,
we can enumerate: (i) the snow albedo feedback, (ii) driver of sub-seasonal to seasonal atmospheric
predictability, (iii) important role in the recent Arctic amplification and (iv) its impact on future
water resources [101]. The snowpack lying on top of the soil affects the evolution of atmospheric
temperatures via its high albedo and its thermal insulation capacity that can create a decoupling
between the soil and the atmosphere [102-104]. This snow insulating effect causes strong temperature
inversions near the surface in winter, which represents a challenge for daily minimum temperature
forecasting. Snow also affects the freezing of water in the soil, with an impact on the hydrology
in spring, on near-surface temperatures and on the stable boundary layer development [105-107].
Snow cover also acts as a water reservoir, which is released by snowmelt in the spring, influencing
runoff, soil moisture, evapotranspiration and thus precipitation and the entire hydrological cycle [108].
Until 2009, the snow pack was parameterised in H-TESSEL following Douville et al. [109]. The snow
pack was represented with a single layer of dry snow (i.e., neglecting liquid water) with four snow
prognostic variables: mass, albedo, density and temperature. Snow albedo decreased in time at an
exponential or linear rate, for melting and normal conditions respectively, and snow density increased
with time according to an exponential relaxation.



Remote Sens. 2018, 10, 2038 17 of 72

With the participation of H-TESSEL in the snow model inter-comparison project 2
(SnowMIP2, [110]), and after the soil hydrology revision presented in the previous subsection, several
shortcomings of the Douville snow pack representation were identified such as the lack of liquid
water representation with freeze/thaw cycles during the melting season, unrealistic evolution of snow
density, and unrealistic albedo of shaded snow (i.e., snow under high vegetation). These shortcomings
were partially addressed with a full revision of the snow pack parameterisation in 2009 [111] including;:
(i) a new parameterisation of snow density, (ii) a liquid water reservoir and (iii) revised formulations
for the sub-grid snow cover fraction and snow albedo. In offline mode, forced with near-surface
observations, the revised scheme reduced the end of season ablation biases from ten to two days in
open areas, and from 21 to 13 days in forest areas. The evolution of snow mass, depth and density
during one winter season at the Fraser forest and open stations is shown in Figure 9, a research location
in the Rocky Mountains, CO, USA. The results show the improvements of the snow scheme revision
(NEW) with respect to the version used in ERA-Interim, labelled as control (CTR). The new snow
density parameterisation increased the snow thermal insulation, reduced soil freezing, improved the
hydrological cycle, and substantially reduced a warm winter bias compared to Siberian screen-level
(2m) observations (not shown).

The dramatic change in surface reflectivity when snow is present has been widely explored using
EQO data, in particular in the visible range, and is mainly limited by cloud presence and contamination.
The detection of snow on the surface was one of the first applications of EO data associated with
surface characteristics and it is currently one of the surface variables with longer observed datasets
using remote sensing. Furthermore, it is the main direct data source in land-surface assimilation in
several operational weather forecasting centers [112]. In addition to snow presence, snow mass is an
important water reservoir and there have been many studies focusing on the retrieval of snow mass
from satellite [113].

Monitoring of snow cover area is well established based on optical data, whereas current Snow
Water Equivalent (SWE, i.e., the total water mass in liquid equivalent) products mostly rely on passive
microwave measurements [114]. Active microwave measurements at high frequency (Ku-band)
are sensitive to volume scattering of the dry snow as well as the wet or dry status of the snow
cover [115]. They are therefore also relevant for future mission concepts dedicated to accurate snow
water equivalent retrieval from space. Dry snow is, however, largely transparent at lower frequencies
(C or L-bands), making it a challenge to observe snow from space [116,117].

Physically-based forward models that rely on a good understanding of the electromagnetic
interactions with the snowpack are best suited to obtain consistent retrievals of snow macrophysical
and microphysical properties or for data assimilation in NWP systems. The new generation
of snow forward models, such as the Snow Microwave Radiative Transfer (SMRT), account for
multi-layer snow emission and backscatter [118]. Using satellite data from microwave sensors with
appropriate multi-layer forward modeling and retrieval approaches for the snow microwave properties
characterisation is of great interest to support physically based multi-layer snow model developments.
Recent studies showed that SMOS data [119] and ground-based L-band measurements [120] could
give insight on snow density and liquid water in snow using a two stream approach. This is promising
for constraining model errors in snow depth that are not associated with snow mass but with its state
of compaction.
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Figure 9. Offline simulation results with the older (CTR ECMWEF) snow scheme (black line—before
2009 revision), and NEW (red line—after 2009 revision) for the 20042005 winter season at Fraser
forest (a—c) and open (d—f) sites. Snow mass (a,d), snow depth (b,e) and snow density (c,f) are shown,
with time on the x-axis (from 1 October 2004 to 1 June 2005). Observations are represented by open

blue circles.

3.1.3. Permanent Snow and Ice

In glaciers and over ice-sheets such as Antarctica and Greenland, the representation of snow for
weather and seasonal forecasting has slightly different challenges. The spatial variability is somewhat
reduced and open-snow is the dominant cover. There is also less emphasis on the mass balance as this
is often not directly relevant. It is, however, essential to correctly represent the albedo to resolve the
snow energy balance with a particular focus on melting. EO snow albedo, along with snow cover,
plays a crucial role in model evaluation and development [121] with some important examples of data
assimilation [122].

The surface skin temperature provides information particularly over Antarctica where polar
orbiting satellites have multiple passages per day. The presence of snow largely affects the diurnal
cycle of LST, for which current state-of-the-art models show some limitations. Recent results have
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also shown the potential for monitoring internal temperature of the ice sheet in Antarctica [123,124]
using SMOS data. EOs can provide reliable information of LST over snow and ice in clear-sky
conditions [125]. However, its application for model evaluation has been limited so far because of the
poor coverage of geostationary satellites in high latitudes and because of the low temporal resolution
of polar satellites far from the poles. LST data have been used to evaluate the diurnal cycle of skin
temperature in the ECMWF ERA-Interim reanalysis over Antarctica, showing a homogeneous and
persistent (throughout the year) warm bias over the Antarctic plateau [126]. Numerical experiments
by [127] indicated that this could be associated to the high thermal inertia of deep snowpacks in the
bulk (single-layer) snow scheme used in the reanalysis model (see Figure 10), indicating the potential
of more sophisticated multi-layer snowpack schemes in future operational weather forecasting models.
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Figure 10. Time-series of the land surface (skin) temperature (LST, Celsius) at the south-pole for in situ
observations (BRSN), MODIS satellite data (MODIS), numerical experiment with the bulk (single-layer)
snow scheme (CTR) and numerical experiment with the thermal depth of the snow reduced by a factor
of 10 (DSN), the latter being a proxy for the potential impact of a multi-layer snow scheme. It is clear
that DSN has a larger amplitude LST diurnal cycle than CTR, and a better representation of strong
cooling events [127].

3.1.4. Vegetation and Carbon Cycle

The biosphere plays a prominent role in regulating the flux of gases, energy and momentum
into the atmosphere, so it is important to properly represent it in models. Parameterisations of the
biosphere are simplified representations of the natural processes in which the spatial scales of interest
such as the plant, field or watershed remain largely sub-grid in the foreseeable future and can only
describe the main feedback mechanisms sometimes marred by sizeable systematic errors. A key
characteristic for water vapour and carbon fluxes modeling is the so-called canopy resistance, which is
a bulk representation of stomatal resistance, vegetation type and leaf area. The stomata are leaf pores
through which the plants absorb carbon dioxide and transpire water vapour.

There are continuing efforts to calculate large-scale evapotranspiration using EO data.
Globally available products include MODIS [128], GLEAM [129,130], SEBS [131] and PT-JPL [132],
FLUXCOM [133] or WECANN [134]. Since evapotranspiration cannot be observed directly from
radiative, observable properties of the surface and atmosphere, typically the models use EO data such
as radiation, rainfall and soil moisture to train or derive simple models.
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Refs. [135,136] focused on evaluating these products using flux tower and river streamflow under
the LandFlux-EVAL initiative. They found significant differences between the products, which limited
their use for model evaluation. More recently, Refs. [137,138] have assessed the latest products.
They conclude that (i) the models tend to overestimate soil evaporation, (ii) the way the models treat
soil moisture stress is important and that (iii) finding ways to evaluate the split of evapotranspiration
into its three components (transpiration, soil surface and interception evaporation) is currently not
possible but a critical task for the future. For the latter, Ref. [139] showed that the flux attribution is a
complex issue.

Despite these caveats, it is imperative that developers use observed data to evaluate their models.
To that end, iLAMB (integrated Land Atmosphere Model Benchmarking, [140]) was developed as a
shared framework for large-scale model evaluation. It was used by the EartH2Observe project [141] to
evaluate a suite of ten models including the evaluation of evaporation against the GLEAM EO product.
As other researchers, they found that the comparison had limited value due to limited accuracy of the
EO product.

In the ECMWEF land surface scheme, the Leaf Area Index (LAI) expresses the phenological
phase of vegetation (growing, mature, senescent, dormant). Initially it was kept constant [142] and
assigned using a look-up table depending on the vegetation type. Thus, vegetation appeared to be
fully developed throughout the year. In November 2010, Ref. [143] modified this and introduced a
seasonality of vegetation via a LAl monthly climatology based on the MODIS (collection 5) satellite
product by [144]. The new monthly LAI climatology was shown to affect particularly the spring
season when the radiative forcing is already strong, but when the vegetation not yet fully developed.
The sensitivity generally indicated a warming of the spring as a consequence of the lower LAI and
reduced evaporation (and consequently more sensible heat flux). This resulted in a reduction of the
systematic 2-m temperature errors in the spring [143].

Recently, the Copernicus Global Land Service (CGLS) products of surface albedo and LAI based
on observations from the SPOT-VEGETATION and PROBA-V sensors [145] have become available
in near real-time (NRT) with an operationally-maintained production chain. However, the direct
use of these products within a NWP system is not possible without quality checks given the spatial
and temporal discontinuities they may contain. A direct assimilation of LAI and surface albedo
products using optimal interpolation analysis with the ECMWF NWP system was explored and
evaluated for anomalous years [146]. It was shown that: (i) the assimilation of these products enables
detecting /monitoring extreme climate conditions where the LAI anomaly could reach more than 50%
and the albedo anomaly could reach 10% (Figure 11), (ii) extreme LAI anomalies have a strong impact
on the surface fluxes, while for the albedo, the impact on surface fluxes is small, (iii) neutral to slightly
better agreement with in situ surface soil moisture observations and surface energy and CO; fluxes
from eddy—covariance towers is obtained, and (iv) in forecast mode, the assimilation of LAI reduces
the near-surface air temperature and humidity errors both in wet and dry cases, while the albedo has a
small impact, mainly in wet cases, when albedo anomalies are more noticeable.

3.2. Land—-Atmosphere Fluxes

3.2.1. CO, Natural Ecosystem Exchange

More recently, the ECMWF land surface scheme has been extended with a carbon dioxide module
based on the A-gs model [147]. The reason for adopting simple vegetation and carbon dioxide
schemes, is that these are suitable for the NWP setup where environmental factors are controlled by
meteorological forcing and constrained by data assimilation. The model relates photosynthesis to
radiation, atmospheric carbon dioxide (CO,) concentration, soil moisture and temperature. Ecosystem
respiration is based on empirical relations dependent on temperature, soil moisture, snow depth
and land use [148]. The CO; module parameters are optimised by vegetation type considering the
Gross Primary Production (GPP) and the Ecosystem Respiration (Reco). Together, they compose the
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Net Ecosystem Exchange (NEE) of CO, between biosphere and atmosphere. The FLUXNET-based
in situ observations from different climate regimes (http:/ /www.fluxdata.org/), combined with a
benchmarking systems similar to iLAMB [140], was used for parameter optimization by minimizing
flux errors. Subsequently, a different year of the FLUXNET data was used for verification.

T e —— | ——— ]
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Figure 11. Relative anomaly [%] with respect to mean (1999-2012) climate of Leaf Area Index (LAI)
(left) and broadband diffuse albedo (right) for (a) August 2003; (b) July 2010 and (c) November 2010.
Regions of interest are zoomed in.

The seasonal cycle of NEE is illustrated in Figure 12 for six sites with different biomes. Two
model configurations are shown: the first uses a stomatal resistance formulation for evaporation
that is controlled by the photosynthesis module (C-TESSEL), and the second uses the Jarvis-based
stomatal resistance for evapotranspiration (CH-TESSEL). In addition, the CASA climatology
(Carnegie-Ames-Stanford Approach, [149] ) is shown because it is extensively used in the community
and it was previously used as a boundary condition for atmospheric CO, in the MACC (Monitoring
Atmospheric Composition and Climate) project. Although it is difficult to draw firm conclusions,
it is clear that the errors in NEE are large and vary dramatically from site to site, and differences
between C-TESSEL and CH-TESSEL are small compared to the errors. The correlation between model
NEE and observations averaged over 34 flux tower sites is 0.37 for CASA, 0.68 for C-TESSEL and
0.65 for CH-TESSEL. Both TESSEL versions have a correlation of about 0.80 for sensible and latent
heat fluxes [148]. The substantial improvement of C-TESSEL /CH-TESSEL with respect to the CASA
climatology is significant because it suggests that the real-time meteorological variability is a key
driver of the NEE variability.
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Figure 12. Seasonal cycle (2004) of 10-day averaged offline simulated (lines) and observed (blue dots)
Net Ecosystem Exchange pmol m~2 s~! for C-TESSEL (with A-gs, black line), CH-TESSEL (with
Jarvis-type evaporation, red line) and CASA-GFED3 (green line) at diverse FLUXNET observational
sites in the panels (a—f) representative of different biomes: (a) Southern Great Plains site-Lamont, US;
(b) Monte Bondone, Italy; (c) Tonzi Ranch Sierra Nevada, US; (d) Morgan Monroe State Forest, US;
(e) Saskatchewan Western Boreal, Mature Black Spruce forest, Canada; (f) Castelporziano, Italy.

Correlations coefficients of the two components of NEE, GPP and Reco, compared with tower
observations (0.8 for both fluxes, on average over 34 sites) indicate much higher skill and confirm the
robustness of these results. NEE is a small residual of GPP and Reco; therefore, a correlation coefficient
above 0.6 is highly relevant. Again, C-TESSEL and CH-TESSEL show similar performance, with site to
site variability attributed to representativity of the model grid-box [148]. CH-TESSEL has also been
evaluated in coupled integration mode for the 2003 to 2008 period.
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Figure 13. Atmospheric CO, anomalies associated with the passage of a low pressure system over N.
America: (a) CO; anomalies above the well-mixed background CO; at different levels in the vertical:
grey near the surface, cyan at 850 hPa, blue at 500 hPa and dark grey at 300 hPa on 24 September 2010.
The anomalies are defined as CO, dry molar fraction above the background value of 392 ppm for both
near the surface and at the 850 hPa levels, and above the background value of 388 for the 500 and 300
hPa levels. The locations of the observing site of the Park Falls Tower (Wisconsin, USA) is depicted by
a red triangle. The black contours of mean sea level pressure show the location of the centre of low
pressure systems; (b) daily mean dry molar fraction (ppm) of CO; from measurements (black) and
forecasts (cyan) at Park Falls in September 2010. The observations are courtesy of NOAA Earth System
Research Laboratory [150].

The operational CAMS (Copernicus Atmosphere Monitoring Service) atmospheric CO, analysis
and forecast system has been using the online NEE fluxes from CH-TESSEL ever since its introduction
in the IFS, replacing the offline CASA fluxes from the GFED dataset [151]. Extensive testing of
this online configuration shows that the global CO, atmospheric inter-annual variability is well
simulated [152]. The correlation of global CO, with observationally based estimates is 0.70. The global
CO,, forecast has high skill in simulating day-to-day synoptic variability, which is crucial in order to be
able to assimilate atmospheric CO; observations.

Figure 13 illustrates the spatial and temporal CO, synoptic anomalies associated with the passage
of synoptic weather systems over North America. The CO; forecast can represent the peaks of CO;
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observed at Park Falls (Wisconsin, USA) originating mainly from the advection of high CO, anomalies
generated at the surface within the warm conveyor belt of synoptic low-pressure systems. Modelling
day-to-day variability of the CO, fluxes from vegetation compared to using equivalent monthly mean
fluxes with a diurnal cycle enhances significantly the atmospheric CO; variability and skill. Again,
this illustrates the advantage of modelling the CO, fluxes inside the IFS with real-time meteorology.
Despite the synoptic skill provided by the NEE synoptic variability, the model suffers from substantial
biases in the biogenic CO; fluxes (GPP and Reco). These biases are diagnosed and corrected by
comparing the model budget with a reference budget from a flux inversion system [153] based on in
situ observations of atmospheric CO; at the surface [154]. The biogenic flux adjustment scheme of [153]
addresses the important task of reconciling the bottom-up and top-down estimates of CO, fluxes. The
benefits are a substantial reduction in the atmospheric CO, biases as well as a useful diagnostic to
guide model developement. New data sets based on FLUXNET data [155] or satellite observations of
Solar Induced Chlorophyll Fluorescence [156] can also be used to improve the attribution of the errors
associated with GPP and Reco.

3.2.2. CH4 Natural Methane Fluxes

Recent trends in atmospheric CHy are not well understood and attribution using surface networks
is underdetermined [157]. The relatively short CHy atmospheric lifetime of 9.8 years [158] and the
combination of anthropogenic and natural sources make CHy, a suitable species for spatial and temporal
analysis using EO. Near-surface CH,4 sensitivity provided by the GOSAT satellite has been available
since 2009 and provides retrievals using the light-path proxy approach from shortwave infrared
radiances. To improve attribution and aid model development, retrievals of methane isotopologues,
such as 13CHy, could be used in the future. These retrievals are currently limited to stratospheric
retrievals using the Atmospheric Chemistry Experiment (ACE) satellite [159] and remain a challenge
for tropospheric instruments.

Wetlands are the most dominant source of CHy, contributing about 30% to the total flux [160].
Large uncertainties have been identified in both the spatial and temporal distribution of wetland
CHy4 fluxes provided by land surface models [161]. Major impacts can be seen when simulating
long-term CH4 emissions taking into account different vegetation classes [162]. Ref. [163] used GOSAT
column CHy4 (XCHy) to evaluate wetland emissions from the Joint UK Land Environment Simulator
(JULES, [164]). The detailed spatial and temporal resolution of GOSAT data permitted evaluation of
the model performance over specific wetlands, which provided insight into some of the causes of
model uncertainty. Bias in the modelled fluxes highlighted a failure to capture large scale, river fed,
wetlands in the Pantanal region during high rainfall years. This is most likely caused by a lack of river
routing in the model or by a misrepresentation of methanogenesis in high flood waters. In 2009 /2010,
the Parana River region experienced a flood event that caused a spike in CHy concentration retrieved
from GOSAT; this was not reproduced in JULES, highlighting the need to include representation of
over-bank inundation in the model.

Figure 14 shows the model failure to transport surface moisture, via river runoff, from the rainfall
region in Southern Brazil down the Parand River towards Paraguay and Argentina. The lack of river
routing within the model causes a spatial bias in wetland area in JULES when compared to the GRACE
satellite water storage anomaly, resulting in misrepresentation of modelled CHy fluxes.
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Figure 14. Maps of the Parana region for November 2009 to February 2010 showing (top-left,
clockwise): GOSAT-JULES difference, JULES wetland emissions, JULES wetland fraction, GRACE
water storage anomaly, Sustainable Wetland Adaptation and Mitigation Program (SWAMP) wetland
fraction and JULES rainfall amount [163].

3.2.3. Vegetation Water Fluxes

Transpiration dominates the continental water cycle [165-167]. It is therefore crucial to better
represent and constrain vegetation activity and its contribution to the continental energy and water
cycles. Historically, continental microwave remote sensing has been focusing on soil moisture
retrieval [168,169]. Vegetation was mostly considered during the retrieval of surface soil moisture as a
by-product as it affects the signal penetration to the surface [170,171]. The attenuation of the microwave
signal when passing through the vegetation layer depends on the so-called Vegetation Optical Depth
(VOD). The VOD depends on the frequency of the sensor, on the water content of the plant (trunk,
branches, leaves) as well as on the biomass [172-178]). As such, there has been recent interest in using
VOD to assess biomass changes [37,39,178-181] or plant water stress strategies [177]. The VOD might
prove especially useful in regions where soil moisture retrieval is especially complicated by dense
vegetation coverage (e.g., forested landscape). C or X-band do not penetrate much into the canopy and
are more sensitive to the top part of the canopy. Figure 15 shows that L band is sensitive up to very
dense canopies (300 Mg/hectare) enabling the probing of almost all vegetation canopies [182]. A further
advantage of the VOD is that data can be acquired even in the presence of clouds. C-band senses a
thicker layer of the canopy and branches so that the signal somewhat differs from the X-band signal
especially in humid regions with dense canopy coverage such as the Amazon rainforest (Figure 16).
The lower frequency signal, in L-band, senses a thicker vegetation layer corresponding to the above
ground biomass such as the ones derived in [183] (Figure 15).
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Figure 15. Relationship between Above ground Biomass (AGB) in Mg/hectare and Normalized

Difference Vegetation Index (NDVI) data from X-band, C-band and L-band Vegetation Optical Depth

(VOD, left panel). The right hand panel shows AGB data versus VOD from SMOS L-band observations

(red dots) [183].

Most of our observations of the land surface relate to surface variables (soil moisture, biomass,
vegetation coverage among others) but ultimately one of the key objectives is to better constrain the
vegetation water, energy and carbon fluxes. Recently, direct observations of a proxy for photosynthesis
have been made possible, at the global scale using Solar-Induced Fluorescence (SIF) [184-192]). SIF is a
by-product of photosynthesis, which is directly related and even nearly-proportional to photosynthesis
in most conditions and is a direct indicator of vegetation stress [156]. One of the advantages of SIF
is that it provides information that is not included in the other datasets (e.g., vegetation indices or
VOD). Indeed, SIF is able to correctly capture the seasonal cycle across diverse climates dominated by
phenology and temperature (Figure 16 top panel the northeastern US), by temperature and water stress
(Figure 16 middle panel Mediterranean Spain) or in rainforests, where vegetation indices struggle to
correctly define the seasonality which is imposed by leaf aging [193-195]) and radiation structure [196]
(Figure 16 lower panel, the Tropical Amazon). SIF thus provides unique information to constrain
land-surface fluxes and its response to droughts (e.g., [197]). It is, however, particularly noisy [186]
so that averaging in both time and space is needed to extract a meaningful signal. This noise is also
a major road block for direct use in either a data assimilation context or to directly assess surface
fluxes. As a result, recent approaches have tried to use SIF not directly but as a target of machine
learning strategies using MODIS broadband reflectances (Reconstructed SIF, [198]). The advantage
of such approach is that it gets rid of most of the large amplitude noise in SIF, while conserving to
a large extent the photosynthetic activity dependence across biomes and climates. An alternative to
SIF is the Photochemical Reflectance Index (PRI) [199] or combined products that can improve the
signal-to-noise ratio.
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Figure 16. Seasonal cycles over different climates (top: energy limited—northeastern US, middle:
Mediterranean climate in Spain, bottom: rainforest in the Amazon) as assessed using different sources
of data: Vegetation Optical Depth (VOD) at high (X-band), medium (C-band) or low frequency (L-band),
Enhanced Vegetation Index (EVI) and Solar-Induced Fluorescence (SIF) using the GOME-2 satellite data.

3.2.4. CO, Anthropogenic Fluxes and Co-Emitters

In the atmospheric source inversion community, the use of satellite data to constrain trace gas
fluxes was made possible through the adoption and adaptation of data assimilation techniques already
in use at operational NWP centers. As a result, two methods have emerged: Four-Dimensional
Variational (4D-Var) and Ensemble Kalman Filter (EnKF) [200] The computational efficiency of
4D-Var to solve high-dimensional inverse problems and its ability to accommodate a large amount of
remote-sensing measurements over long periods of time, made 4D-Var a method of choice in the source
inversion community. However, the development and maintenance of adjoint models in variational
approaches can be cumbersome. On the other hand, EnKF-based methods use a small ensemble of
perturbed model simulations to represent and propagate the error statistics explicitly, while similar
methodological difficulties characterize DA in NWP and source inversion problems, it is worth noting
some specific aspects of the latter. First, while the prior (or background) information in NWP DA
systems is associated to prognostic variables of the model that are often directly observed, the source
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inversion problem involves model parameters that are usually measured only indirectly, making the
quality of the optimised sources strongly dependent upon the accuracy of the transport model itself.
Additionally, the prior error statistics prescribed for the bottom-up emission sources are often very
uncertain owing to the sparsity of the available observational network [201]. These uncertainties in the
transport model and the prior error emissions can translate into large errors in the inferred posterior
estimates. Although current methodologies used for top-down atmospheric source inversions have
reached a high level of sophistication enabling efficient and scalable computation of the posterior
estimates along with their information content (i.e., posterior errors, observational constraints), the lack
of observations to provide source estimates at accuracies and spatio-temporal resolutions compatible
with environmental policy requirements is a key remaining limitation. The advent of satellite missions
dedicated to air quality and carbon cycle observations (Sentinel-5P, GeoCarb) will be a milestone toward
building such policy-relevant monitoring systems and will provide an unprecedented opportunity
to improve the synergy between Earth surface models and numerical simulations of atmospheric
dynamics across time scales, from NWP to climate modeling. In turn, such inverse modeling tools
can be exploited to conduct instrumental design experiments that can inform mission strategies and
requirements [202], and optimize scientific outcomes.

3.3. Land Surface Properties

Land surface processes and parameters strongly depend on geomorphology, land use, water body
distribution, vegetation cover and soil type, and therefore the climatological fields describing these
characteristics are a key part of any land surface scheme.

3.3.1. Orography

For every grid point, models have associated values for surface elevation (orography), sub-grid
orography statistics, land cover (used as land/sea mask), lake cover and depth, glacier cover, low and
high vegetation type, low and high vegetation cover, albedo, LAI, and soil texture. Within the ECMWEF
system, these fields are derived from different external sources (e.g., albedo and LAI from MODIS,
vegetation type and cover from GLCC/AVHRR, water bodies from Globcover).

Global datasets come in different resolutions, data formats and projections and need to be
interpolated, or merged in the case of non-global coverage. In light of the changing climate signal also
affecting surface physiography, multi-year climatological data at 1 km resolution for all surface fields is
desirable. One-km resolution represents a challenge for current global NWP and Earth system models,
but it is relevant to allow direct comparison with present and future Sentinel missions monitoring
the Earth system. Figure 17 shows the orography, ocean and lake bathymetry used operationally at
ECMWE. The lake depth is based on [203] and the ocean bathymetry is based on ETOPO1 by [204].

The land-sea mask and orography are based on the following raw data information: ESA’s
Globcover V2.2 based on Envisat MERIS (300 m resolution) mapping 2005/2006 (ESA, 2010), the Shuttle
Radar Topography Mission (SRTM [205] at about 90 m resolution, the Global Land One-kilometer Base
Elevation (GLOBE [206], only north of 60N and south of 60S), and specialised DEMs of Greenland [207],
Iceland (Icelandic Meteorological Office, 2013) and Antarctica [208], replacing the corresponding data
points on the 1 km latitude/longitude grid. The lake mask has been created from the land sea mask
and quality controlled by consistency algorithms. All spatial resolutions that are used by the IFS run
in fully coupled forecasts [209].
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Figure 17. Global map of land orography and ocean+lakes bathymetry in m (above and below sea level
or lake shore respectively) at T1279 resolution ( 9km) as used in the ECMWZF—IFS operational system.

3.3.2. Soil Depth

While earth-observing satellite data have been widely used in modeling land processes (e.g.,
global land cover [210]), in situ measurements as constrained by satellite observations are needed
to estimate other variables. One such variable is the Depth To Bedrock (DTB), which is essential for
accurate land surface modeling of the energy, water, carbon cycle, and dynamic vegetation. In general,
a lower boundary condition is needed to solve the governing equation for vadose zone soil moisture.
The presence of bedrock is a player in soil hydrology as can change the water flow and storage [211].
Earlier land models assume a free drainage bottom condition (i.e., without considering groundwater),
while more recent models include an unconfined aquifer which implicitly assumes a globally constant
bedrock depth. However, no conditions are satisfactory without a DTB estimate [212].

Ref. [213] has recently developed the world’s first global 1 km soil and alluvial thickness dataset
(Figure 18) by combining geomorphologic theory with the best available data for topography (using
satellite elevation measurements), climate, ecosystem [210], and geology as input. This dataset utilised
different approaches to separately estimate soil and alluvial thickness for upland hillslopes, upland
valley bottoms, and lowlands, as the character of soil depth is fundamentally different for these units:
upland hillslopes have relatively shallow soils (~1 m), while valleys and lowlands have relatively
deeper soils/alluvium (10 s of meters or more) (Figure 18). These three units are distinguished at the
90 m pixel scale using a valley network extraction algorithm as well as criteria related to geologic age.
On hillslopes, the data set is calibrated and validated using independent data sets of measured soil
thicknesses from the U.S. and Europe and on lowlands using DTB observations from groundwater
wells in the U.S. This dataset is publicly available at: https://daac.ornl.gov/SOILS/guides/Global
Soil_Regolith_Sediment.html. A similar product based on global spatial ensemble prediction models
with various input datasets is also available [214].
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Figure 18. Global map of soil and alluvial thickness [213].

The impact of this DTB dataset on land surface modeling has been demonstrated [215]
implementing variable DTB in the Community Land Model (CLM4.5) with 0.9°latitude x
1.25°1longitude grid boxes. The greatest changes in the simulation with variable DTB are to baseflow,
with the annual minimum generally occurring earlier in the year comparing to fixed soil depth
simulations. Smaller changes are seen in latent heat flux and surface runoff primarily as a result
of an increase in the annual cycle amplitude. These changes are related to soil moisture changes
that are most substantial in locations with shallow bedrock. Total water storage anomalies are not
strongly affected over most river basins because they tend to contain deep soils. These anomalies are
substantially different for river basins in more mountainous terrain. Additionally, the annual cycle
in soil temperature is partially affected by including realistic soil thicknesses resulting from changes
in the vertical profile of heat capacity and thermal conductivity. However, the largest changes to soil
temperature are introduced by the soil moisture changes in the variable soil thickness simulation.

3.3.3. Soil Texture

Soil properties, particularly the texture of the soil in the near-surface horizon, obviously affect the
evolution of soil moisture by controlling the ability of water to move in the soil column. Water retention
and conductivity, as governed by soil texture, have secondary effects such as controlling the persistence
of soil moisture anomalies and helping determine what type of vegetation can flourish in a location.
Less evident is how subsurface properties affect surface soil moisture evolution. This is not well
appreciated because it is very difficult to discern the structure of the terrain below the top meter
or two of the soil. Weather and climate models typically treat the vadose zone below vegetation
roots as terra incognita, assuming no spatial variability except that related to the slope of terrain. If a
model simulates the water table, it is often connected directly to the shallow soils without regard
to the spatial variability in between. Lumped hydrologic models infer the effect of the vadose zone
in their calibration, but this is not possible in ungauged or arid basins. In reality, there can be
preferential pathways of drainage that quickly remove water from the reach of direct evaporation
or plant transpiration [216]. These correspond to areas of fractured or unconsolidated bedrock,
called karst that underlie a significant fraction of the land surface, about a quarter of the continental
US [217] and western part of Kazakhstan, where landscape can change quite dramatically, including
emergence/disappearance of lakes, in a very short period [218]. Observational and modeling evidence
suggests regions overlying shallow karst formations experience very different soil water evolution,
affecting surface moisture and heat fluxes, vegetation distribution, and even impacting the evolution
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of convective precipitation [219]. A direct way to discern the effect of karst is to examine time series of
in situ soil moisture measurements from networks using consistent instrumentation spanning both
karst formations and less permeable bedrock. In the southern Appalachian region around the Middle
Tennessee River Basin, there are extensive shallow carbonate karst formations and a fairly dense
network of US Department of Agriculture (USDA) soil moisture stations spanning karst and non-karst
substrates. A strong correspondence between weak soil moisture memory (lagged autocorrelation
of anomalies) and the presence of karst has been found across a dozen stations [220]. Comparison
among closely-located stations helps control for the confounding effects of other climatic, vegetative
and hydrologic factors. The methodology developed for in situ data has been applied to remotely
sensed soil moisture georeferenced against high-resolution karst information from the US Geological
Survey [217] across the southeastern and south-central US. Small-scale (within 2700-3000 sq.km)
spatial variability in karst coverage correlates significantly with small-scale variability in soil moisture
memory [221].

Figure 19 shows that, where there is strong spatial variation in karst coverage, there is also
greater variation in soil moisture memory as derived from NASA/SMAP satellite soil moisture.
Correspondingly, where there is little or no variation in bedrock permeability, soil moisture memory is
also more uniform.

The fact that the signal of karst appears in satellite soil moisture data yields promise that remote
sensing could contribute important hydrologic information in poorly-observed regions of the globe.
Radiances in near-infrared and other parts of the electromagnetic spectrum have been shown to
correlate to surface soil properties in unvegetated areas [222,223]. Remote sensing of soil moisture is
achieving levels of quality and information content that can allow inference of surface and subsurface
properties otherwise unobserved or unavailable. Careful assays of remote sensing data could enhance
global datasets used for Earth system modeling, whose quality is currently skewed towards developed
wealthy nations.
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Figure 19. Explained spatial variance in satellite-derived soil moisture memory (e-folding time scale
i.e., lag at which the autocorrelation of SMAP soil moisture drops below 1/e) within circles of radius
0.3° as a function of the standard deviation of gridded United States Geological Survey (USGS) shallow
carbonate karst coverage in the corresponding circles. The karst data have been interpolated to the
9 km resolution SMAP Level-3 data grid, and the circles for comparison are centered on each land grid
cell between 29-40N, 104-83W. Purple circles indicate the means of spatial explained variance in soil
moisture memory within bins of width 2.0% centered on each 1.0% step of the abscissa; cyan circles are
for the 90th percentile values. Dotted lines are best-fit linear regressions. All correlations are significant
at the 99% confidence level.

3.4. Inland-Waters

Globally, there are approximately 117 million lakes (>0.002 sq.km) with a combined surface area
of 5 x 10° sq.km, which is approximately 3.7% of the Earth’s non-glaciated land surface [224]. Despite
their relatively small spatial extent, lakes can have a disproportionately large influence on the climate,
in particular within their near-vicinity [225,226]. This occurs as a result of lakes influencing surface
energy exchange with the atmosphere, which differs to those from soil or vegetated surfaces [227].
Some lakes also freeze seasonally, resulting in considerable changes in surface albedo and thermal
capacity and, as a result, alterations in lake—climate interactions [228].

Although traditionally neglected in land surface models within NWP, primarily because of the
computational expense, community efforts in recent years have improved our understanding of the
importance of lakes and have highlighted their added-value in simulating accurately regional climatic
variations [225,229,230]. Research aimed at introducing inland water bodies (lakes, rivers and coastal
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waters) into the operational model at ECMWEF has started by considering a medium-complexity scheme
that satisfies the operational constraint of having low computational cost. FLake [231], a shallow-water
scheme originally applied to lakes, was introduced into the IFS in progressive steps. This model is a
particularly appropriate choice for NWP as it predicts the vertical temperature structure and mixing
conditions in lakes of various depths and on time scales from a few hours to multiple years, while
maintaining a relatively low number of prognostics variables (seven in total). The model is intended
for use as a lake parameterisation scheme in NWP, climate modelling and other prediction systems for
environmental applications. FLake has been implemented in the operational regional weather forecast
models of Deutscher Wetterdienst (the German weather service), Finnish Meteorological Institute
(FMI), Norwegian Meteorological Institute (Met.no) and Swedish Meteorological and Hydrological
Institute (SMHI), and is used for research at several meteorological services across Europe including
Météo-France [232] and UK Met Office [233], and is included in several climate models. The most
important external variable for lake model FLake is depth (bathymetry or mean depth at least).
There were several attempts to derive lake depths from satellite observations. Already in [234], an
approach for determining lake depths by using spaceborne Synthetic Aperture Radar (SAR) images
was developed. For those lakes that freeze completely to the lake depth some time in the winter,
the simulated ice growth curve providing the ice thickness allows to estimate the lake’s maximum
water depth [234]. In [235], the same idea was used and lake depth of shallow sub-Arctic lakes and
ponds was determined by using Landsat Thematic Mapper (TM) and European Remote Sensing
(ERS)-1 Synthetic Aperture Radar (SAR) data. Landsat TM image is used to map lake bathymetry
and multi-date ERS-1 images acquired during winter are utilised to determine when and which lakes
freeze to the bottom during winter. Lake depth estimates computed by this approach correspond
well with in situ measurements, especially in the tundra zone; however, the approach needs to be
further tested and improved for automatic use [235]. While at the moment still no complete global
lake depth dataset exist, local bathymetry dataset can be found at least for large lakes (see Section 6.3.4
of the GCOS report [60]). Beyond a few large lakes, the collection of local datasets is a difficult task;
therefore, the most common practise for lake modeling in global NWP is to use in situ measurements
and indirect estimates of lake mean depths based for instance on the geological origin of lakes [236].

Prior to its implementation in the IFS, the influence of FLake was evaluated in a series of
preparatory studies: first, in an offline experimental framework [227,237], and then extended to
fully-coupled lake-atmosphere simulations [230]. More recently, the possibility of treating sub-grid
water bodies (lakes and coastal waters) using the land surface tiling methodology has been included.

An important step in the inclusion of lakes in NWP is that the simulated lake surface temperature
and lake ice conditions are validated by comparing with observations. The use of remote sensing data
for validating lake model outputs in NWP is essential, in particular as in situ observations at a global
scale are currently lacking.

With this approach, each grid box is divided into fractions of different land use, each with their
own tile. Merits and limitations of the tiling methodology when accommodating lakes and forest
within the same model grid-box have been assessed by [238]. They conclude that the tiling method
captures well the influence on surface fluxes of the contrast between the “lake” and “forest” surface
boundary conditions, on seasonal and diurnal time scales (see Figure 20, upper left and upper right
panels, respectively).
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Figure 20. Sensible heat-flux over a lake (blue line) and a near-by forest (green line) in Finland.
An annual cycle (upper left) and a mean July diurnal cycle (upper right) are shown for the model (solid
line) and the flux-tower observations (dashed line), with a negative sign indicating an upwards heat
transfer. Lake surface temperature on global scale simulated by the model FLake and observed with
MODIS (bottom).

The behavior of simulated lake surface temperatures (Figure 20, bottom panel) and the period
of ice cover in large inland water bodies worldwide was verified using satellite-based products
(see [230]). Particularly relevant for validating lake simulations (temperature and ice cover) in NWP
is, for example, data provided by the ATSR Reprocessing for Climate, ARC-Lake lake surface water
temperature and ice cover dataset [239]. Satellite-derived observations from ARC-Lake have been
used in recent years to validate simulations from the Canadian small lake model within the Canadian
land surface scheme [240], global lake temperature simulations performed within the CNRM-CM5
climate model [232], and in validating the coupling of FLake to the UK Met Office Unified Model [233],
among others.

The impact of introducing interactive inland water bodies in ECMWF’s IFS has been examined by
a set of dedicated analysis experiments. However, the lake model (FLake, [231]) does not currently
consider a mass balance of water (only for the ice components), whereby a static dataset is used
to represent the extent and bathymetry of the world’s lakes. Monitoring lake depth globally is not
currently achievable although inversion methods (e.g., Ref. [237] demonstrates that an effective lake
depth can be derived on the basis of the remotely-sensed lake water-surface temperature).
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3.5. River Discharge and Hydrological Forecasting

Continental and global scale information on river discharge, and upcoming floods and droughts
can be used in many applications including disaster risk reduction initiatives, particularly in preparing
for severe events and providing early awareness where local flood models and warning services
may not exist [241]. The European and Global Flood Awareness Systems (EFAS and GIoFAS) are
part of the European Commission’s Copernicus Emergency Management Service (CEMS-flood)
and provide complementary flood forecast information to relevant stakeholders supporting flood
risk management at national, regional and global level at several different timescales ([242-245];
http:/ /www.globalfloods.eu). CEMS-flood is based on an Earth system modelling approach, and
the forecasts are derived using in situ and satellite data as well as hydro-meteorological and Earth
system models. It is only very recently that improvements in the resolution, precipitation processes,
and the improvements in land surface representations discussed in the above subsections have meant
that the forecasts of hydrological variables such as precipitation, soil moisture and more recently also
runoff, can be considered good enough to make effective forecasts of river flow using Earth System
models [241,246]. GIoFAS uses the ECMWF Ensemble Prediction System, the operational ensemble
forecasting product of ECMWEF which consists of a 51 member ensemble of global forecasts. The
ECMWEF land surface scheme, H-TESSEL, then calculates land surface response to atmospheric forcing,
and estimates the surface water and energy fluxes and the evolution of snowpack, soil temperature
and soil moisture. Operational ensemble forecasts of surface and sub-surface runoff are resampled
to 0.1 degree resolution to be used as input by the river routing model (for more information
see [242,245]). River flow climatologies, against which forecasts are compared, have been created
using corrected reanalysis products such as ERA-Interim Land [247] which includes precipitation
adjustments based on monthly GPCP v2.1 (Global Precipitation Climatology Project). Similar corrected
climatologies are planned for the next generation reanalysis product ERA5 (i.e., ERA5-Land). Future
needs for hydrological forecasting in terms of data assimilation, model validation/evolution and
parameterisation are better information on river flow rates and flood extent (particularly in real time),
groundwater contributions, and high resolution river catchment and river channel topography from
EO data [248-250].

3.6. Land—Atmosphere Coupling

A promising method of model evaluation is to study the dynamics of the system rather than
its states. The response of the land surface to atmospheric drivers repeats after each rainfall
event. The repeating wetting—drying cycle can be studied using different observable properties
to identify the time response of the surface to the driver which is dependent on evapotranspiration.
Refs. [251,252] developed a systematic way of analysing the time-response of evaporation after a
rainfall event by analysing the land surface temperature increase. The theory is that a dry soil with
low evapotranspiration will warm up more quickly than a wet surface with high-evapotranspiration.
Since the dynamical time-response of the system is an inherent property of the land surface, rather
than a result of the d