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The following work details a study into real-time failure adaptive control allocation 

method for powered descent vehicle systems. The motivation for this work is to enable future 

human and robotic missions utilizing a powered descent system to tolerate engine failures in 

flight without the loss of crew or assets. This study is conducted using a six degree-of-freedom 

trajectory simulation of a PDV experiencing either a loss of thrust or an engine stuck full on 

failure scenario. Sequential least squares in the frequency domain is used on-board to process 

inertial measurement unit (IMU) data and generate an estimate of the PDV plant model, which 

is then fed to the guidance and control system. Data used by the sequential least squares 

method is generated from an in-flight maneuver. The work herein focuses on determining a 

maneuver that is least impactful to the PDV trajectory and enables a suitable plant model 

estimate. A 1.5 s long maneuver with an amplitude of 5% throttle is determined to provide 

suitable data for the sequential least squares method to estimate a plant model. A PDV 

implementing this method can adapt to a single engine failure and continue to reach its 

touchdown conditions. 

Nomenclature 

𝐴  = orthogonal multi-sine function amplitude  

𝑎𝑠𝑒𝑛𝑠𝑒𝑑   = sensed acceleration 

𝐵  = orthogonal multi-sine function global amplitude 

𝑩  = bias array 

𝐶  = non-dimensionalized force or moment coefficient 

𝐷𝑛𝑜𝑧  = engine nozzle diameter 

𝐹  = force 

𝑭𝒄  = control command array 

𝑓  = orthogonal multi-sine function targeted frequency  

𝐺  = number of targeted frequencies used in the orthogonal multi-sine function 

ℎ  = size of data operated on by the sequential least squares method 

[𝐼𝑥𝑥 , 𝐼𝑦𝑦 , 𝐼𝑧𝑧] = principle moments of inertia 

𝑖  = measurement index 

𝐽  = ordinary least squares cost function 

𝑘  = total number of measurements taken 

𝑀  = moment  

𝑚  = powered descent vehicle mass 

𝑁  = number of excitation functions used in the orthogonal multi-sine function 
[𝑝, 𝑞, 𝑟]  = components of the powered descent vehicle rotation vector in the body coordinate system 

𝑸  = powered descent vehicle plant model 

𝑻  = throttle array 
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𝑇𝑚𝑎𝑥   = maximum engine thrust 

𝑡  = time 

𝑡1,…,8  = throttle settings for each of the eight engines 

𝑈(𝑡)  = orthogonal multi-sine function 

𝑿̃  = matrix of regressor terms in frequency domain 

𝑿̃𝑅𝑒𝐼𝑚  = matrix of regressor terms with real and imaginary components separated and appended together 

𝒙  = matrix of regressor terms 

[𝑥̂, 𝑦̂, 𝑧̂]  = body coordinate system 

[𝑥𝐼𝑀𝑈2𝐶𝑜𝑀 , 𝑦𝐼𝑀𝑈2𝐶𝑜𝑀 , 𝑧𝐼𝑀𝑈2𝐶𝑜𝑀]  = inertial measurement to center of mass distances in the body coordinate system 

[𝑦1,…,8, 𝑧1,…,8] = 𝑥 and 𝑦 body axis location for each of the eight engines 

𝑧  = measured data array 

𝑧̃  = measured data array in frequency domain 

𝑧̃𝑅𝑒𝐼𝑚  = appended measured data array with real and imaginary components separated and appended together 

𝒛̃  = appended measured data array in frequency domain 

   

𝜃  = array of parameters 

𝜃̂  = parameter estimate 

𝜈  = equation errors in the frequency domain 

𝝂̃  = appended equation errors in the frequency domain 

𝜎2  = variance 

𝜙  = orthogonal multi-sine function phase shift 

𝜔  = angular frequency  

 

Subscripts  

𝑎𝑙𝑙  = all parameter estimates 

𝑏  = bias term 

𝑐  = commanded 

𝐶𝑚𝑦  = values pertaining to the pitching moment coefficient 

𝐶𝑚𝑧  = values pertaining to the yawing moment coefficient 

𝑖, 𝑘  = indices 

𝑚  = moment 

[𝑥, 𝑦, 𝑧]  = body coordinate directions 

I. Introduction 

he goal of this research is to enable a powered descent vehicle (PDV) to adapt in real-time to failures and 

degradations in its performance that change its dynamic behavior. Past robotic Mars missions have not had this 

capability. For example, during the Mars Science Laboratory (MSL) mission, the descent stage designers performed 

extensive testing on the Mars Lander Engines (MLEs) and Reaction Control System (RCS) thrusters and found that 

failures in these systems were unlikely1. This along with 

mission constraints led the designers to conclude that the MSL 

“spacecraft was not designed to survive an engine failure for 

either the MLEs or RCS thrusters”2. The risk inherent in this 

approach is acceptable for a mission and descent system with 

a single payload or asset. However, this approach is 

unacceptable when a mission and descent system must 

consider the safety and security of already established assets 

on the ground and/or onboard crew members. Therefore, 

redundancy and failure mitigation are of concern for PDVs. 

Implementing redundancies for larger systems, such as descent 

engines, can be problematic due to the mass or the complexity 

of adding such systems. Constraints from the mission itself can 

also hinder the implementation of redundant engines and 

supporting systems. 

T 

 

Figure 1. Orientation of the eight thrusters 

with respect to the vehicle body frame.  
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Human Mars mission architectures, due to their early stages in design and development, are also in need of 

component failure mitigation strategies that do not add significant mass and complexity. One solution for mitigating 

these issues would be to build a guidance and control strategy that can adapt and reconfigure in the face of component 

failures. Such a capability has been identified as a key technology to be developed by NASA Space Technology 

Roadmap for Entry, Descent, and Landing (EDL)3. A guidance and control strategy of this nature would enable a 

descent system to land in the event of a component failure without the loss of crew or assets.  

This paper provides an overview of a real-time strategy for updating a PDV plant model on-board. This strategy 

aides the guidance and control system’s ability to maximize its control authority in the event of an engine failure. 

Section II describes the simulation environment, and the PDV used to demonstrate the failure mitigation strategy. 

Section III discusses the use of real-time parameter identification, which is the basis of the work herein. Section IV 

details the derivation of the plant model form and how the on-board estimates are generated. Section V contains the 

investigations performed and the results obtained. Section VI expands the failure mitigation strategy to other failure 

scenarios, and Section VII provides the final conclusions.  

II. Trajectory Simulation 

The six degree-of-freedom 

(DoF) simulation is built using 

the Program to Optimize 

Simulated Trajectories – II 

(POST2) software4. In this 

simulation, the PDV model is 

based on a human Mars mission 

architecture outlined by 

NASA’s evolvable Mars 

campaign5,6. The PDV initial 

mass is 46.4 mt (of which 9.5 

mt is fuel) and utilizes eight 

fixed engines with a maximum 

thrust of 100 kN per engine for 

deceleration5,6. The eight 

engines, shown in Figure 1, are 

independently throttled to 

create a differential thrust that 

pitches and yaws the PDV, and 

enables it to follow a gravity 

turn trajectory supplied by an 

onboard guidance routine. The 

PDV simulation begins at a 

planetodetic altitude of 3559 m, 

planet relative velocity of 471 

m/s, and a flight path angle of -

19.9º. The trajectory targets the 

beginning of the vertical 

descent phase for landing, 

which is 2.5 m/s at 12.5 m 

above ground. Through the 

vertical descent phase, the PDV 

reaches touchdown, 0 m, at 2.5 

m/s. The simulation assumes no 

winds or aerodynamics are 

acting on the PDV. 

Additionally, Mars Global 

Reference Atmospheric Model 

(Mars-GRAM) 2010 

 

Figure 2. Thrust and throttle profiles of the nominal PDV trajectory. 

 

 

Figure 3. Nominal trajectory of the PDV. The gravity turn phase operates 

between 0 and 51 s; the vertical descent phase operates from 51 s until 

touchdown. 

 

 

Vertical Descent Initiation 

Vertical Descent Initiation 
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atmosphere and J2 gravity harmonic are used7.  

Inertial measurement unit (IMU) and IMU propagator models are used to simulate the sensor and navigation 

systems on the PDV. These models were developed and used for the Low Density Supersonic Decelerator (LDSD) 

project8.  

The PDV trajectory is divided into two phases: gravity turn and vertical descent. The gravity turn phase assumes 

the PDV thrust vector is aligned with the PDV velocity vector. This assumption is enforced by pitching the PDV as 

needed through differential throttling of the engines. During this phase, differential throttling is also used to keep the 

vehicle travelling in plane relative to its initial velocity azimuth. The enforcement of these assumptions are shown in 

Figure 2 and Figure 3. Note in Figure 3, that the guidance commanded thrust stays within 20-80% of the maximum 

engine thrust of 100 kN per engine. This leaves room for the control system to operate. Switching to the vertical 

descent phase maintains the PDV constant rate of descent while removing lateral motion. At the beginning of vertical 

descent, four of the engines are shutdown (engines 2, 3, 6 and 7). This is done to keep throttle commands from 

dropping below a 20% threshold.  

III. Real-Time Parameter Identification 

System and parameter identification is the determination of model form and value based on imperfect observations 

of the inputs and outputs of a desired system for the purpose of generating an equivalent mathematical surrogate. An 

equivalent mathematical surrogate is the simplest model that exhibit the desired system characteristics9. In the past, 

system and parameter identification has been used to characterize and develop models for aircraft, turbines, and rocket 

engines9,10. For these applications, data was collected during a test and then processed off-line. Real-time approaches 

have been developed for fault detection and enabling fault tolerant control in aircraft11,12. 

Real-time parameter identification, specifically sequential least squares in the frequency domain (SLSFD), is used 

here to fulfill the research goal of an adaptable PDV control system. This strategy is implemented on-board the PDV 

in the six DoF trajectory simulation. It allows the PDV to update its internal plant model and identifies failed or 

underperforming engines. The parameter identification equations described herein, Eqs. (1-9), are taken from Klein 

and Morelli, Ref. 8.  

A. Ordinary Least Squares 

Real-time parameter identification methods provide on the fly analysis of a systems behavior, which are used to 

estimate the parameter values inside an existing model. The recursive ordinary least squares cost function, Eq. (1), 

forms the basis of the approach taken in the work herein. 

𝐽(𝜃) =
1

2
∑[𝑧(𝑖) − 𝒙𝑻(𝑖)𝜃]2
𝑘

𝑖=1

 (1) 

Where 𝑧 is the measured data array that the model will be based on, 𝒙 is a matrix of regressor terms, 𝜃 is the array of 

parameters to be estimated, and 𝑖 is the index of measurements, and 𝑘 is the total number of measurements taken. The 

parameters can be solved for by minimizing this cost function, which leads to  

𝜃̂ = (𝒙𝑇𝒙)−1𝒙𝑇𝑧 (2) 

where 𝜃̂ is an array of parameter estimates.  

B. Sequential Least Squares in the Frequency Domain 

The implementation, used here, of SLSFD utilizes the Euler approximation of the discrete Fourier transform of 

both the regressor matrix and the measured data 

𝑿̃𝑖(𝜔) = 𝑿̃𝑖−1(𝜔) + 𝒙𝑖(𝑖)𝑒
−𝑗𝜔𝑖Δ𝑡  (3) 

𝑧̃𝑖(𝜔) = 𝑧̃𝑖−1(𝜔) + 𝑧𝑖(𝑖)𝑒
−𝑗𝜔𝑖Δ𝑡    𝑖 = 1, … , ℎ (4) 

where 𝑗 = √−1 and 𝜔 is the angular frequency. The rigid body dynamics that are of interest occupy a frequency band 

< 12 Hz. With a limited frequency band of interest, Eqs. (3-4) efficiently compute the discrete Fourier transform. 

Moreover, keeping the investigation within this limited band, allows for automatic filtering of wideband measurement 

noise. Through Eqs. (3-4), the ordinary least squares cost function then changes to 
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𝐽(𝜃) =
1

2
(𝑧̃ − 𝑿̃𝜃)

†
(𝑧̃ − 𝑿̃𝜃) 

(5) 

where † signifies the transpose of the complex conjugate. Solving for the minimum of the cost function yields 

𝜃̂ = (𝑿̃𝑅𝑒𝐼𝑚
†
𝑿̃𝑅𝑒𝐼𝑚)

−1

(𝑿̃𝑅𝑒𝐼𝑚
†
𝑧̃𝑅𝑒𝐼𝑚) (6) 

𝐶𝑜𝑣(𝜃̂) = 𝜎2 (𝑿̃𝑅𝑒𝐼𝑚
†
𝑿̃𝑅𝑒𝐼𝑚)

−1

 (7) 

where  

𝑿̃𝑅𝑒𝐼𝑚 = [
𝑅𝑒(𝑿̃)

𝐼𝑚(𝑿̃)
] (8) 

𝑧̃𝑅𝑒𝐼𝑚 = [
𝑅𝑒(𝑧̃)

𝐼𝑚(𝑧̃)
] (9) 

Appending the real and imaginary parts of the regressor and measurement arrays, as seen in Eqs. (8-9), effectively 

doubles the data content available to estimate the parameter array, 𝜃̂. The sequential least squares method operates on 

sections of data of size ℎ, which depends on the time window of interest. The covariance provides a measure of the 

relationship between different terms in 𝑿̃. If the off diagonal terms are larger in magnitude than the diagonal terms, 

then the data is correlated. This can lead to issues in estimating the parameters in 𝜃̂, and will require efforts to 

decorrelate the terms in the covariance matrix. 

IV. Plant Model Generation of the Powered Descent Vehicle  

A. Thrust Selection 

 The PDV follows total force, pitching and yawing moment commands that are computed from the guidance and 

control routines. These commands are met through differential thrusting of the eight fixed engines. Note that rolling 

moment and normal forces are not controllable via differential throttling. Fortunately, the disturbances in these 

dimensions should be small and are assumed controlled by other means. Given the positions of the engines, a 

formulation for how they meet these commands is 

  

𝑭𝒄 = 𝑻𝑸 + 𝑩 (10a) 

𝑭𝒄 = [𝐹𝑥𝑐  𝑀𝑦𝑐  𝑀𝑧𝑐] (10b) 

𝑻 = [𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 ] 
(10c) 

𝑸 = 𝑇𝑚𝑎𝑥

[
 
 
 
 
 
 
 
 
 
𝜃̂1 𝑧1𝜃̂1 𝑦1𝜃̂1

𝜃̂2 𝑧2𝜃̂2 𝑦2𝜃̂2

𝜃̂3

𝜃̂4

𝜃̂5

𝜃̂6

𝜃̂7

𝜃̂8

𝑧3𝜃̂3

𝑧4𝜃̂4

𝑧5𝜃̂5

𝑧6𝜃̂6

𝑧7𝜃̂7

𝑧8𝜃̂8

𝑦3𝜃̂3

𝑦4𝜃̂4

𝑦5𝜃̂5

𝑦6𝜃̂6

𝑦7𝜃̂7

𝑦8𝜃̂8]
 
 
 
 
 
 
 
 
 

 (10d) 

𝑩 = 𝑇𝑚𝑎𝑥[𝜃̂𝑏𝑥 𝜃̂𝑏𝑦 𝜃̂𝑏𝑧] (10e) 

where 𝐹𝑥𝑐, 𝑀𝑦𝑐, and 𝑀𝑧𝑐 are the individual commands. Throttle solutions for each engine 𝑡1−8 meet the command 

array, 𝑭𝒄. The plant model, 𝑸, is comprised of the maximum thrust, 𝑇𝑚𝑎𝑥; the estimated engine efficiency (or 

parameter), 𝜃̂1−8, for each engine; and the moment arm of each engine, 𝑦1−8 and 𝑧1−8. The bias array, 𝑩, captures 

unmodeled dynamics, by including the bias parameter estimates, which correspond to the force, pitching moment, and 

yawing moment, respectively. To solve for the throttle array, 𝑻, Eq. (10a) can be reformulated into an ordinary least 

squares problem 
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𝑻 = [𝑭𝒄 − 𝑩]𝑸𝑇[𝑸𝑸𝑇]−1 (11) 

B. Plant Model Generation 

The parameter estimates used in Eq. (10d), are determined through the SLSFD method described above. Initially, 

separate models for the total force, 𝐹𝑥; pitching moment, 𝑀𝑦; and yawing moment, 𝑀𝑧, are created. The non-

dimensionalized versions of these models are  

𝐶𝑥 =
𝐹𝑥

𝑇𝑚𝑎𝑥

= ∑𝜃𝑖𝑡𝑖

8

𝑖=1

+ 𝜃𝑏𝑥 (12) 

𝐶𝑚𝑦 =
𝑀𝑦

𝑇𝑚𝑎𝑥𝐷𝑛𝑜𝑧

= ∑ 𝜃𝑖

𝑧𝑖𝑡𝑖
𝐷𝑛𝑜𝑧

8

𝑖=1

+ 𝜃𝑏𝑦 (13) 

𝐶𝑚𝑧 =
𝑀𝑧

𝑇𝑚𝑎𝑥𝐷𝑛𝑜𝑧

= ∑ 𝜃𝑖

𝑦𝑖𝑡𝑖
𝐷𝑛𝑜𝑧

8

𝑖=1

+ 𝜃𝑏𝑧 (14) 

where 𝐷𝑛𝑜𝑧 is the engine nozzle diameter and is included for non-dimensionalization purposes.  

 Values of 𝐹𝑥, 𝑀𝑦, and 𝑀𝑧 are estimated through an understanding of the PDV equations of motion and IMU data.  

𝐹𝑥 = 𝑚(𝑎𝑠𝑒𝑛𝑠𝑒𝑑𝑥
− (𝑞2 + 𝑟2)𝑥𝐼𝑀𝑈2𝐶𝑜𝑀 + (𝑝𝑞 − 𝑟̇)𝑦𝐼𝑀𝑈2𝐶𝑜𝑀 + (𝑝𝑟 + 𝑞̇)𝑧𝐼𝑀𝑈2𝐶𝑜𝑀) (15) 

𝑀𝑦 = 𝑞̇𝐼𝑦𝑦 + 𝑝𝑟(𝐼𝑥𝑥 − 𝐼𝑧𝑧) + 𝑚𝑧𝐼𝑀𝑈2𝐶𝑜𝑀𝑎𝑠𝑒𝑛𝑠𝑒𝑑𝑥
− 𝑚𝑥𝐼𝑀𝑈2𝐶𝑜𝑀𝑎𝑠𝑒𝑠𝑛𝑒𝑑𝑧

 (16) 

𝑀𝑧 = 𝑟̇𝐼𝑧𝑧 + 𝑝𝑞(𝐼𝑦𝑦 − 𝐼𝑥𝑥) + 𝑚𝑥𝐼𝑀𝑈2𝐶𝑜𝑀𝑎𝑠𝑒𝑛𝑠𝑒𝑑𝑦
− 𝑚𝑦𝐼𝑀𝑈2𝐶𝑜𝑀𝑎𝑠𝑒𝑠𝑛𝑒𝑑𝑥

 (17) 

The PDV principal moments of inertia (MoI) are given by 𝐼𝑥𝑥 , 𝐼𝑦𝑦, and 𝐼𝑧𝑧. The cross products of inertia are assumed 

to be negligibly small and are ignored. The distance between the IMU position and the center of mass (CoM) in the 

body frame is defined by 𝑥𝐼𝑀𝑈2𝐶𝑜𝑀 , 𝑦𝐼𝑀𝑈2𝐶𝑜𝑀, and 𝑧𝐼𝑀𝑈2𝐶𝑜𝑀. The IMU provides the PDV attitude rates and 

accelerations about the roll, 𝑝; pitch, 𝑞; and yaw, 𝑟, axes. Additionally, the IMU provides the translational acceleration 

data 𝑎𝑠𝑒𝑛𝑠𝑒𝑑𝑥
, 𝑎𝑠𝑒𝑛𝑠𝑒𝑑𝑦

, and 𝑎𝑠𝑒𝑠𝑛𝑒𝑑𝑧
. Principal  

 With values of 𝐹𝑥, 𝑀𝑦, and 𝑀𝑧 determined, Eqs. (12-14) can be transformed into the frequency domain and set up 

as SLSFD problems. 

𝑧̃𝐶𝑥
= 𝜃̂𝑿̃𝐶𝑥

+ 𝜈𝐶𝑥
 (18) 

𝑧̃𝐶𝑚𝑦
= 𝜃̂𝑿̃𝐶𝑚𝑦

+ 𝜈𝐶𝑚𝑦
 (19) 

𝑧̃𝐶𝑚𝑧
= 𝜃̂𝑿̃𝐶𝑚𝑧

+ 𝜈𝐶𝑚𝑧
 (20) 

The arrays 𝑧̃𝐶𝑥
, 𝑧̃𝐶𝑚𝑦

, and 𝑧̃𝐶𝑚𝑧
 are the frequency content of the non-dimensionalized force and moments in Eqs. (12-

14). The two dimensional arrays 𝑿̃𝐶𝑥
, 𝑿̃𝐶𝑚𝑦

, and 𝑿̃𝐶𝑚𝑧
 are the frequency content of the regressor terms in Eqs. (12-

14). The arrays 𝜈𝐶𝑥
, 𝜈𝐶𝑚𝑦

, and 𝜈𝐶𝑚𝑧
 are the complex equation errors in the frequency domain. The arrays in Eqs. (18-

20) can be appended to one another to create 

𝒛̃ = 𝜃̂𝑿̃ + 𝝂̃ (21a) 

𝒛̃ = [

𝑧̃𝐶𝑥

𝑧̃𝐶𝑚𝑦

𝑧̃𝐶𝑚𝑧

] (21b) 

𝑿̃ = [

𝑿̃𝐶𝑥

𝑿̃𝐶𝑚𝑦

𝑿̃𝐶𝑚𝑧

] (21c) 
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𝝂̃ = [

𝜈𝐶𝑥

𝜈𝐶𝑚𝑦

𝜈𝐶𝑚𝑧

] (21d) 

The creation of Eq. (21) combines all the available data content into a single estimate, which allows for more accurate 

estimation of the values in 𝜃̂ than using Eqs. (18-20) individually. The parameter estimates in 𝜃̂ can be found using 

Eq. (6). Note, that the conversion into the frequency domain removes the bias. So after solving Eq. (6), 𝜃̂𝑏𝑥, 𝜃̂𝑏𝑦, and 

𝜃̂𝑏𝑧 are found separately by solving a second ordinary least squares problem in the time domain, Eq. (2), for each force 

and moment. The formulation of the plant model is made such that a PDV operating under nominal conditions (i.e. no 

engine failures) would have parameter estimates, 𝜃̂, of all ones, and the three bias parameters all equal to zero. A PDV 

experiencing a loss of thrust in a single engine would have a 𝜃̂ array of all ones except for the engine that has failed, 

which would have a value of zero.  

C. Orthogonal Multi-Sines Input 

 Early investigations in applying the above analysis quickly identified high correlation between the eight engine 

throttle commands. These correlations resulted in poor parameter estimates that were unusable for meeting the goal 

of the present research. The solution to this issue is to inject a test input on top of the throttle command solutions, 

which is referred to as a maneuver for the rest of this paper. Orthogonal multi-sine functions generate functions that 

are orthogonal in time and frequency, which decorrelates the throttle commands, thus allowing the effects of each 

engine to be uniquely identified. Orthogonal multi-sine waveforms were generated for each of the eight engines using 

the MKMSSWP function within the System IDentification Programs for AirCraft (SIDPAC)13. This function 

generates waveforms that are a sum of sinusoids at discrete frequencies that are phase optimized to minimize 

deviations from the nominal input, known as the peak factor. The form of these sinusoids are 

𝑈𝑖(𝑡) = 𝐵𝑖  ∑ 𝐴𝑖,𝑘 𝑠𝑖𝑛(2𝜋𝑓𝑖,𝑘𝑡 + 𝜙𝑖,𝑘)

𝐺𝑖

𝑘=1

; 𝑖 = 1,2, … , 𝑁 (22) 

where 𝑁 is the number of excitation functions to be generated, and 𝐺𝑖 is the number of targeted frequencies, 𝑓𝑖,𝑘, in 

each function. Through optimization, each excitation function targets a minimum peak factor by adjusting the function 

amplitude, 𝐴𝑖,𝑘 , and the phase shift, 𝜙𝑖,𝑘, for each target frequency. A global amplitude, 𝐵𝑖 , is applied to each excitation 

function, 𝑈𝑖, to meet the needs of the maneuver. A detailed description of the generation and use of orthogonal multi-

sine functions can be found in Ref. 14. 

V. Analysis 

The goal of this research is to enable a PDV to adapt in real-time to failures and degradations in its performance. 

The failure scenarios studied in this report are single engine failures where the engine either loses all thrust, or is stuck 

full on. The objective of the real-time parameter identification, is to identify the type of failure, approximate the 

magnitude of the engine performance degradation, and feed that information to the guidance and control system in the 

form of a plant model update. This update enables the PDV to change its throttle commands according to the 

degradation in the performance, and allow the PDV to continue its flight and reach its target conditions.  

The inclusion of a maneuver requires an understanding of how the throttle amplitude and duration affect the 

parameter estimates and the PDV’s ability to reach its target conditions in the event of a failure. Additionally, the 

effects of IMU errors on these same metrics need to be well understood. 

A. Maneuver Study 

The study into the maneuver 

configuration investigates the throttle 

amplitude and maneuver time length. 

The goal for this study is to determine 

the least disruptive maneuver 

combination that provides the best 

possible outcome for the PDV (i.e. provides a reasonable PDV plant model that enables the PDV to reach its target 

conditions in the event of an engine failure). For each maneuver time length a unique group of eight orthogonal multi-

sine waveforms were generated using the SIDPAC toolbox. When finding the minimum peak factor, the optimization 

used within SIDPAC resulted in local minima solutions. Thus 10 versions of each maneuver length of time, shown in 

Table 1. Maneuver design space. 

Maneuver Throttle Multiplier, %/100 [0.3, 0.2, 0.1, 0.05] 

Maneuver Length of Time, s [4.0, 3.5, 3.0, 2.5, 2.0, 1.7, 1.5] 
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Table 1, were created. This enabled a study into the effects of the maneuver time length itself, and not just the result 

of a particular local minima solution. Table 1 provides the design space exploration of the maneuvers. Permutations 

of these maneuver combinations are combined with each engine failure scenario for all eight engines.  

The focus of the maneuver study is on the effects they have on the parameter estimates and the PDV’s ability to 

target landing conditions; not the logic for triggering the maneuver itself. Therefore, for this study, the initiation of 

the maneuver is assumed to be concurrent with the beginning of the failure. This is equivalent to instantanous detection 

of a failure, without knowledge of what type of failure has occurred. 

As an example, Figure 4 shows box-and-whiskers plots of the plant model fit error versus the maneuver multiplier 

and time length for the failure scenario where engine four has lost all thrust. Similar analyses with similar results were 

performed for each of the engines. Plant model fit error is the root mean square error and is defined as 

𝐹𝑖𝑡 𝐸𝑟𝑟. = √
∑ (𝜃̂𝑎𝑙𝑙(𝑖) − 𝜃𝑎𝑙𝑙(𝑖))

211
𝑘=1

11
 

(23a) 

𝜃̂𝑎𝑙𝑙 = [𝜃1 𝜃̂2 𝜃̂3 𝜃̂4 𝜃̂5 𝜃̂6 𝜃̂7 𝜃̂8 𝜃̂𝑏𝑥 𝜃̂𝑏𝑦 𝜃̂𝑏𝑧] (23b) 

𝜃𝑎𝑙𝑙 = [𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 𝜃7 𝜃8 𝜃𝑏𝑥 𝜃𝑏𝑦 𝜃𝑏𝑧] (23c) 

The box-and-whisker provides a rough statistical 

representation of the 10 versions of each maneuver 

time length. In general, this figure shows the trend 

that increasing the maneuver multiplier and time 

length lead to decreased model fit error. This trend 

is observed, because least squares methods depend 

on the data content. Larger maneuver amplitudes 

increase the amount of data that is above the noise 

threshold, and longer maneuvers add more data for 

the least squares method to operate on. Therefore, 

increasing the maneuver multiplier and time length 

increase the data content for the SLSFD method to 

use, thus lowering the model fit error.  

Figure 5 is a sample of the results from the 

maneuver study. For brevity, only one engine failure 

and scenario (engine four full loss of thrust) along 

with two of the throttle multipliers (0.05 and 0.3) is 

shown. Figure 5 is organized in increasing maneuver 

throttle multiplier and show the PDV targeting 

conditions. These figures show the PDV conditions 

planet relative velocity, flight path angle, and pitch 

angle at the initiation of vertical descent (left 

column) and at touchdown (right column). The 𝑥-

axis of each plot correspond to the different 

maneuver lengths of time studied. Within each 

figure the black dashed line represents the nominal 

flight of the PDV, where no failure occurred. The 

green diamonds represent a PDV experiencing a 

failure, without implementing a maneuver and 

updating its plant model. The box-and-whisker plots 

(in blue and red) show the result of a PDV 

implementing the corresponding maneuver time length and multiplier. The box-and-whisker plots provide a rough 

statistical interpretation of the 10 versions of the maneuver time length.  

In looking at the results in Figure 5, it can be seen that implementing the real-time parameter identification using 

any of the maneuvers significantly improved the PDV’s ability to reach the target conditions. In Figure 5a, there is a 

noticeable step increase in performance between the 2 and 2.5 s maneuvers. This step is attributed to the step 

improvement in the fit error shown in Figure 4. However, it should be noted that the step improvement seen at vertical 

descent initiation (left column in Figure 5a) does not translate into significant differences in meeting the touchdown 

 

Figure 4. Model fit error versus maneuver multiplier 

and maneuver time length. Models are generated for a 

PDV experience a complete loss of thrust in engine four. 

The box-and-whiskers plots divided by: Top Whisker 

(95%-tile), Top of Box (75%-tile), Red Line (50%-tile), 

Bottom of Box (25%-tile), and Bottom Whisker (5%-

tile). Outliers are indicated by a red cross. 
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conditions (right column in Figure 5a). Furthermore, the maneuver combination, that theoretically provides the least 

data content (1.5 s with 0.05 throttle multiplier), still provides enough information to enable the control system to 

compensate for the failed engine number four and land the PDV within a close proximity of the target conditions. 

Specifically, it is able to land within 0.1 m/s of the velocity, 3º of the flight path angle, 2º and of the pitch angle targets.  

 
a) 

 

 
b) 

Figure 5. Maneuver variable effects on PDV’s ability to meet the target conditions (planet relative velocity, 

flight path angle, and pitch angle) at discrete events. The above plots compare PDV operating nominally to 

one experiencing a loss of thrust in engine four and with no plant model update and to a PDV implementing 

a planet model update using the corresponding maneuver. a) Maneuver throttle multiplier of 0.05. b) 

Maneuver throttle multiplier of 0.3. The box-and-whiskers plots divided by: Top Whisker (95%-tile), Top 

of Box (75%-tile), Red Line (50%-tile), Bottom of Box (25%-tile), and Bottom Whisker (5%-tile). 
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In looking at Figure 5b, the increase in throttle multiplier (0.3) increases the PDV’s ability to reach the target 

conditions. This is again attributed to the increase data content, which decreases the model fit error, and improves the 

controller’s ability to control the PDV. However, this increase in data content comes at the cost of utilizing more thrust 

and more resources. Lastly, there is a small increase in the pitch angle error at the vertical descent initiation as the 

maneuver time length is increased. This is due to the small deviations from the overall commanded inputs caused by 

the orthogonal multi-sine inputs. Even though these inputs are designed to minimize the overall deviation from the 

commanded, their effect becomes more noticeable with longer maneuvers. However, even for the 4 s maneuver, the 

effect on the pitch angle at vertical descent initiation are small at approximately 3.2º off of the nominal -90º. For 

reference, the InSight Mars Lander, scheduled to launch in May 2018, is the next robotic lander to Mars. The 

touchdown condition requirements for this lander under nominal operating conditions are: horizontal velocity less 

than 1.4 m/s, vertical velocity between 1.4-3.4 m/s, and pitch to be less than 5º off vertical‡. The Apollo Lunar Lander  

touchdown attitude requirement was to be ≤ 6º of the local gravity vector15. Future human missions to Mars will likely 

have different requirements on their touchdown conditions. However, these two examples provide existing references 

to mission requirements imposed on PDVs landing a payload. Using them demonstrates that the failure mitigation 

strategy is able to land a PDV suffering from an engine failure to its touchdown conditions within reasonable bounds.  

B. IMU Error Study 

This study investigates the degradations in plant model estimation due to IMU noise, bias, and scale factor errors 

and the corresponding effects on the PDV’s ability to reach its target conditions. It is assumed that all other sources 

of IMU errors are zero. The range of IMU errors investigated are taken from the LDSD Gimbaled LN-200 with 

Miniature Airborne Computer  (GLN-MAC), the MSL Miniature Inertial Measurement Unit (MIMU), and the 

Honeywell HG99002,8,16. In this study, the data generated by the IMU is smoothed before entering the SLSFD routine.  

Through the maneuver study discussed in Section V.A, a top performing version of the orthogonal multi-sine input 

function was found for each maneuver time length. Each of these are then applied to a 2000 case Monte Carlo 

simulation where only the IMU errors are dispersed. The results of the Monte Carlo simulation are used to show the 

correlations between the IMU errors and the PDV’s ability to reach the target conditions. For brevity, only one engine 

failure scenario (full loss of thrust in engine three) along with two of the maneuvers (1.5 s long maneuver with 0.05 

throttle multiplier and 4.0 long maneuver with 0.3 throttle multiplier) are shown.  

Correlation coefficients provide a measure of the linear relationship between the investigated IMU errors and their 

effects on the plant model fit errors, which in turn affects the PDV’s ability to reach the target touchdown conditions. 

Table 2 and Table 3 demonstrate the capability of the adaptive control allocation strategy implementing the maneuver 

with the least data content (1.5 s long maneuver with 0.05 throttle  multiplier). Table 2 list the correlation coefficients, 

and Table 3 shows the impact on the model fit error and the errors in the PDV touchdown conditions. Table 4 and 

Table 5 provide the same series of results except the adaptive control allocation strategy is implementing the 4.0 s 

maneuver with a 0.3 throttle mutlipler, which has the most data content.  

 Table 2 shows that the IMU accelerometer and gyroscope noise have the highest correlations to the plant model 

fit error, thus impacting the PDV performance the most. However, Table 3 shows the overall impact to the model error 

is small. Thus the adaptive control allocation strategy is able to correctly identify the failed engine and generate an 

accurate planet model, which then allows the PDV to reach its target touchdown conditons. 

 

Table 2. Correlation coefficients between the IMU sensor errors to the model error and touchdown conditions 

reached by the PDV.   

  

Accelerometer Gyroscope 

Noise Bias Scale Factor Noise Bias Scale Factor 

Model Fit Error 0.959 -0.015 -0.004 0.242 0.005 -0.020 

TD Velocity 0.008 -0.053 0.040 0.437 0.010 -0.011 

TD Pitch -0.252 0.036 0.017 0.009 -0.041 0.003 

TD Flight Path Angle 0.836 0.016 0.013 0.455 0.001 -0.017 

 

                                                           
‡ Information provided through communication with Robert Maddock, NASA Langley EDL Lead for NASA InSight 

Mars Lander. 
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Table 3. IMU sensor errors induce the below range of errors in the parameter identification plant model update 

and the PDV’s ability to reach its target touchdown conditions of 2.5 m/s and -90º pitch and flight path angles.   

  

Errors 

Min  Mean Max 

Model Fit Error 0.08 0.12 0.17 

TD Velocity [m/s] 0.00 0.00 0.00 

TD Pitch [deg] 0.01 0.04 0.10 

TD Flight Path Angle [deg] 0.86 1.15 1.85 

 

Table 4. Correlation coefficients between the IMU sensor errors to the model error and touchdown conditions 

reached by the PDV.   

  

Accelerometer Gyroscope 

Noise Bias Scale Factor Noise Bias Scale Factor 

Model Fit Error -0.106 0.360 -0.484 0.741 0.001 0.222 

TD Velocity 0.031 -0.009 0.056 -0.025 -0.006 0.024 

TD Pitch -0.304 0.834 -0.080 0.039 0.006 0.042 

TD Flight Path Angle 0.506 -0.791 0.025 0.363 0.002 -0.036 

 

Table 5. IMU sensor errors induce the below range of errors in the parameter identification plant model update 

and the PDV’s ability to reach its target touchdown conditions of 2.5 m/s and -90º pitch and flight path angles.   

  

Errors 

Min  Mean Max 

Model Fit Error 0.02 0.02 0.03 

TD Velocity [m/s] 0.00 0.00 0.00 

TD Pitch [deg] 0.00 0.01 0.02 

TD Flight Path Angle [deg] 0.07 0.14 0.20 

 

Table 4 provides results for the adaptive control allocation strategy implementing a maneuver that provides the 

most data content (4.0 s long maneuver with 0.3 throttle multiplier). Although Table 4 shows the IMU accelerometer 

and gyroscope bias and scale factors play a larger role in the plant model fit error, Table 5 shows the net impact is 

significantly reduced when compared to Table 3.   

VI. Engine Failure Scenarios 

Up to this point results have been focused on a PDV experiencing a lss of thrust in one engine. Figure 6 shows the 

broader application of the adaptive control allocation strategy to single engine failure scenarios: loss of thrust, thrust 

stuck full on, and 50% loss of thrust. In each of these failure scenarios, the simulated PDV with no adaptive control is 

shown in the left column; the PDV with adaptive control is in the right. The loss of thrust scenario (Figure 6a, left 

column) causes the PDVwith no adaptive control to impact the ground at 15.5 m/s and at a flight path angle of -59.9º. 

In the stuck full on scenario (Figure 6b, left column), the simulated PDV tumbles until it impacts the ground at nearly 

25 m/s. In the 50% loss of thrust scenario (Figure 6c, left column), the PDV is able to meet the 2.5 m/s touchdown 

velocity condition, but its flight path angle is -79.1º. In all failure scenarios where the PDV implements the adaptive 

control allocation strategy, the PDV is able to meet the target conditions without tumbling or loss of control.  
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a) Loss of thrust in engine three. 

 

 

 

 
b) Engine six is stuck at full thrust. 

Failure Occurs Failure Occurs 

Plant Model Update 

Failure Occurs Failure Occurs 

Plant Model Update 
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c) Engine eight is only able to produce 50% of the commanded thrust. 

Figure 6.  This figure demonstrates the flight of a simulated 46.4mt PDV equipped with eight fixed 100 kN 

engines. In the left column, the PDV experiences a single engine failure and has no adapting capabilities; in the 

right column the same PDV experiences the same failure, but is using the adaptive control allocation strategy 

discussed in this paper. Three failure scenarios shown are: a) full loss of thrust in engine three, b) engine six is 

stuck full on, and c) engine eight is only able to produce 50% of the commanded thrust. The dashed cyan lines 

represent the nominal flight of the PDV (no engine failure). The throttle plots in parts a), b), and c) show the 

throttle commands to each of the eight engines. Note that the throttle plots in the left columns of parts a), b), 

and c) show continued commands to the failed engines even though they are not responsive. However, the 

throttle plots in the right columns, where the adaptive control allocation strategy is implemented, discontinue 

the commands to the failed engines and the other seven engines are adjusted to make up for the loss of thrust. 

VII. Conclusion 

The goal of this research is to enable future PDVs to adapt in real-time to failures and degradations in their 

performance. The real-time adaptive control allocation is performed using SLSFD on-board combined with a 

maneuver to estimate the PDV plant model. The ability to generate a new plant model on-board enables the PDV to 

identify underperforming and failed engines. This information is fed to the guidance and control systems where it 

adapts the engine commands to mitigate the failure.  

The work herein explores the design space of a maneuver to assist on-board identification of engine failures. 

Although the plant model fit error is lower for longer and larger amplitude maneuvers, the 1.5 s and 5% throttle 

amplitude maneuver is found to provide sufficient data for the SLSFD to generate a plant model, while impacting the 

PDV flight the least. Additionally, the combination of the chosen maneuver with SLSFD were found to be robust to 

IMU errors.   

This approach provides a predominantly software approach to failure mitigation that does not rely on duplicate 

hardware, thus saving mass and system complexity. Additionally, this work focuses on the use of IMU measured data 

to identify the specific engine and type failure it is experiencing. This approach is effective in adapting the on-board 

control of the PDV to mitigate an engine failure. Future EDL missions can implement this adaptive control allocation 

strategy to enable their powered descent vehicle to land in the event of an engine failure without the loss of crew or 

assets. Additionally, this work can be readily applied to non-EDL flight systems, such as commercial quadcopters. 

 Several topics are planned for future work. The first is to test the performance of the failure mitigation strategy 

using a navigational filter versus the smoothing routine, which was applied here. The second, will be to implement a 

detection strategy that will be used to initiate the failure mitigation strategy discussed here. Third, to investigate the 

Failure Occurs Failure Occurs 

Plant Model Update 
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effects engine dynamics have on the accuracy of the parameter estimates used to update the plant model. Lastly, to 

investigate the effects to the SLSFD method due to aerodynamic interactions induced by the engine plume on the 

freestream flow.   

Acknowledgments 

The authors acknowledge the support of Dr. Juan Cruz, Dr. Eric Queen, Dr. Eugene Morelli, and Dr. Jared Grauer 

from NASA Langley Research Center; and the support of Richard Powell and James Hoffman from Analytical 

Mechanics Associates, Inc. 

References 

1 Drake, B. G., “Human Exploration of Mars Design Reference Architecture 5.0,” NASA-SP-2009-566, July 2009. 

2 Weiss, J. M., and Guernsey, C. S., “Design and Development of the MSL Descent Stage Propulsion System,” AAS/AIAA Space 

Flight Mechanics Meeting, Kauai, 2013, AAS 13-458. 

3 Adler, M., Wright, M., Campbell, C., Clark, I., Engelund, W., and Rivellini, T., “Entry, Descent, and Landing Roadmap 

Technology Area 09,” National Aeronautics and Space Administration, Washington DC, April 2012. 

4 Striepe, S. A., Powell, R. W., Desai, P. N., Queen, E. M., Way, D. W., Prince, J. L., Cianciolo, A. M., Davis, J. L., Litton, D. K., 

Maddock, R. M., Shidner, J. D., Winski, R. G., O’Keefe, S. A., Bowes, A. G., Aguirre, J. T., Garrison, C. A., Hoffman, J. A., Olds, 

A. D., Dutta, S., Zumwalt, C. H., White, J. P., Brauer, G. L., Marsh, S. M., Lugo, R. A., Green, J. S., “Program To Optimize 

Simulated Trajectories II (POST2): Utilization Manual,” Vol. 2, Ver. 4.0.0.r1173, July 2017. 

5 Polsgrove, T., Chapman, J., Sutherlin, S., Taylor, B., Fabisinski, L., Collins, T., Dwyer-Cianciolo, A., Samareh, J., Robertson, E., 

Studak, B., Vitalpur, S., Lee, A., Rakow, G., “Human Mars Lander Design for NASA’s Evolvable Mars Campaign,” IEEE 

Aerospace Conference, March 2016.  

6 Dwyer-Cianciolo, A., Polsgrove, T., “Human Mars Entry, Descent, and Landing Architecture Study Overview,” AIAA SPACE 

Conferences and Exposition, September 2016, AIAA 2016-5494. 

7 Justh, H. L., “Mars Global Reference Atmospheric Model 2010 Version: Users Guide,” NASA/TM-2014-217499, 2014. 

8 Karlgaard, C. D., O’Farrell, C., Ginn, J. M., Van Norman, J. W., “Supersonic Flight Dynamics Test 2: Trajectory Atmosphere, 

and Aerodynamics Reconstruction,” AAS/AIAA Spaceflight Mechanics Meeting, Napa, 2016. AAS 16-217 

9 V. Klein, E. A. Morelli, Aircraft System Identification: Theory and Practice, AIAA Education Series, AIAA, Reston, VA, 2006. 

10 Brandon, J. M., Derry, S. D., Heim, E. H., Hueschen, R. M., Bacon, B. J., “Ares-I-X Stability and Control Flight Test: Analysis 

and Plans,” AIAA Space 2008 Conference & Exposition, San Diego, 2008, AIAA 2008-7807.  

11 Grauer, J., “Aircraft Fault Detection using Real-Time Frequency Response Estimation,” in AIAA Guidance, Navigation, and 

Control Conference, San Diego, 2016, AIAA 2016-0372.  

12 Song, Y., Campa, G., Napolitano, M., Seanor, B., and Perhinschi, M. G., "Online Parameter Estimation Techniques Comparison 

Within a Fault Tolerant Flight Control System," Journal of Guidance, Control, and Dynamics, vol. 25, no. 3, pp. 528-537, 2002. 

13 SIDPAC, System IDentification Programs for AirCraft, Software Package, Ver. 3.0, E. A. Morelli, Hampton, VA, 2014. 

14 Morelli, E. A., “Multipler Input Design for Real-Time Parameter Estimation in the Frequency Domain,” 13th IFAC Conference 

on System Identification, Vol. 36, No. 16, Rotterdam, 2003, REG-360. 

15 Rogers, W. R., “Apollo Experience Report – Lunar Module Landing Gear Subsystem,” NASA TN D-6850, 1972. 

16 Honeywell Aerospace, HG9900 Navigation-Grade Inertial Measurement Unit (IMU), N61-0491-000-001, September 2009. 

                                                           


