

Design, Fabrication, and Critical Current Testing of No-Insulation Superconducting Rotor Coils for NASA's High-Efficiency Megawatt Motor

Dr. Justin J. Scheidler, Thomas F. Tallerico

NASA Glenn Research Center Materials and Structures Division Rotating and Drive Systems Branch

2018 AIAA Electric Aircraft Technologies Symposium Cincinnati, OH July 12, 2018

www.nasa.gov

Design & Testing of No-Insulation Superconducting Rotor Coils for NASA's HEMM

Motivation

- Reduced energy consumption, emissions, and noise of commercial transport aircraft [1]
 - Electrified aircraft propulsion (EAP) enables system-level benefits to these metrics
- EAP concepts require advances to electric machines
- NASA's High-Efficiency Megawatt Motor (HEMM) sized as generator for NASA's STARC-ABL concept

		STARC-ABL		
	Electric machines	Current design	With HEMM	
	Specific power, kW/kg	13.2	16	
	Efficiency, %	96	98 to 99	
STARC-ABL	Performance relative to STARC-ABL rev A With HEMM			
		Fuel burn, %	-1 to -2	
	Wast	e heat in generator	½ to ¼ (−30 to −44 kW)	

NASA's High-Efficiency Megawatt Motor (HEMM)

- Sized for generator of NASA's STARC-ABL concept
- Wound-field synchronous machine
 - Tolerant of stator fault
- Superconducting rotor
 - Negligible energy loss
 - Very strong magnetic excitation

Parameter	Value
Rated continuous power	1.4 MW
Nominal speed	6,800 rpm
Tip speed	Mach 0.31
Rated torque	2 kNm
Specific power goal	16 kW/kg
Efficiency goal	>98 %

Outline

Talk 1 (Scheidler, 2018 AIAA P&E)

- Complete preliminary design package for rotor
 - Electromagnetic design & optimization
 - Rotor containment design & stress analysis

This talk

- Overview of current rotor design
- Fabrication & testing of sub-scale superconducting rotor coils

Outline

- Rotor & coil design
- Coil fabrication
- Critical current testing
- Conclusions

Rotor Design

Parameter	Value
Electrical frequency	DC
Number of poles	12
Material	Solid $Fe_{49.15}Co_{48.75}V_2$
Outer diameter	30 cm
Inner diameter	18.9 to 20 cm
Axial length	12.5 cm

Design process (see 2018 AIAA P&E paper)

- Defined current & thermal limits
 - Based on manufacturer data & safety factors
- Parametric studies of back iron's width w and thickness t (2D & 3D, nonlinear FEA)
 - Optimized coil's geometry by numerically maximizing # of turns in coil
 - Custom extrapolation of back iron's *B* vs *H* response
 - Metrics: performance performance/mass performance/cost
- Stress analysis of centrifugal loading (2D & 3D FEA)

Soft magnetic material (back iron)

Region available for containment structure & clearances

Rotor Design

Rotor Design

Coil Design

- 2nd generation high temperature superconductor (REBCO) selected
 - Commercially available in long piece length
 - Sufficient performance at "high" temperatures in moderately strong magnetic environments
- REBCO is a composite conductor in the form of thin tape
 - AC losses will be negligible
- No-insulation (NI) coils selected [9-11]
 - Fault tolerant
 - Higher engineering current density
 - Higher mechanical strength

No-insulation superconducting coils are very promising, but have not been studied for rotating systems

Coil Design

Coil characteristics

Parameter	Value
Turn-to-turn insulation	None
Operating temperature	62.8 K
Operating current	51.5 A
# of layers per coil	4
# of turns per layer	~ 230
Solder	52In 48Sn

Superconductor characteristics

Parameter	Value
Material	REBCO
Width	4 mm
Thickness	65 micron
Min. bend radius	15 mm

Risk reduction testing

- Key risks of the superconducting coils
 - Coils will fail when thermally cycled due to thermal stresses
 - Coils will fail when rotor is spun up due to centrifugal stresses
- Risk reduction tests
 - Thermal cycling
 - Goal: demonstrate coils that are not degraded by thermal cycling
 - <u>Approach</u>: measure superconducting performance subject to thermal shock re-measure superconducting performance
 - Proof: negligible change in critical current & "n-value"
 - Rotation (future work)
 - Goal: demonstrate coils that are not degraded by high-speed rotation
 - <u>Approach</u>: measure superconducting performance spin coils re-measure superconducting performance
 - Proof: negligible change in critical current & "n-value"

Outline

- Rotor & coil design
- Coil fabrication
- Critical current testing
- Conclusions

Coil Fabrication

- Methodical development approach: simple, sub-scale realistic, full-scale
- 25-turn sub-scale coils
 - Fewer turns & shorter

dimensions in mm

Coil Fabrication

- 3D printed nylon winding fixture
 - Reduced lead time & cost
 - But, limited temperature
- Accurately establishes width of active region & height
- Fixture inverted for epoxy application

Outline

- Rotor & coil design
- Coil fabrication
- Critical current testing
- Conclusions

Critical Current Testing

- Critical current $(I_C) = I_C(T, B, \theta)$
- Coil mounted to G10 plate & suspended in liquid nitrogen
- Measurements: voltage & transport current

Critical Current Testing

Voltage vs current response commonly described by

 $V = V_{\rm c} \left(\frac{I}{I_{\rm c}}\right)^n$ where the critical voltage $V_{\rm c} = 1 \frac{\mu V}{cm} *$ superconductor length

- "n-value" indicates combined quality of superconductor & measurement
- Detect damage via changes in n and/or I_c

Critical Current Testing – 1-layer coils

- Two 1-layer coils tested: V vs I response at 77 K in "self field"
 - Sanity check: measure for increasing & decreasing I
 - Thermal cycling tolerance: measure before & after 2 or 4 thermal shock cycles

Coil 2 (4 thermal cycles)

Critical Current Testing – 1-layer coils

	Coil 1		Coil 2	
	<i>I</i> _c , A	<i>n</i> , –	<i>I</i> _c , A	<i>n</i> , –
Before thermal cycling	76.8	19.8	75.9	23.9
After thermal cycling	76.9	19.7	76.3	21.7

- Averaged results for increasing & decreasing *I*
- Coil 1 (2 thermal cycles)
 - No detectable damage
- Coil 2 (4 thermal cycles)
 - I_c increased by 1%, but *n* decreased by 9%
 - Inconclusive, but at worst only minor degradation of n

Critical Current Testing – 2-layer coils

- 2-layer coil requires superconducting joint \rightarrow solder introduces finite resistance
- After subtracting the linear trend, results analyzed as before
- Coil 3 broke while attempting to demonstrate self-protection feature
 - Damage occurred only in unprotected current lead

20

Coil 3

Coil 3

Critical Current Testing – 2-layer coils

<u>Coil 4</u>

- Current lead damaged during coil fabrication
 - *I*_c reduced and *n*-value significantly reduced
- I_c increased by 3%, but *n* decreased by 13%
- Inconclusive, but at worst only modest degradation of n

	<i>I</i> _с , А	<i>n</i> , –	
Before thermal cycling	57.4	5.4	
After 2 thermal cycles	58.3	4.7	
After 6 thermal cycles	59.0	4.7	

Coil 4

Outline

- Rotor & coil design
- Coil fabrication
- Critical current testing
- Conclusions

Conclusions

- Discussed the design of the superconducting rotor of NASA's 1.4 MW High Efficiency Megawatt Machine (HEMM)
 - Uninsulated superconducting coils selected to provide fault tolerance and significantly higher engineering current density
 - 2 key risks: resilience to thermal cycling and rotation
- 3D printed winding fixtures work well & allow short lead time
 - But, they prevent the use of some solders while the coil is fixture
- Initial thermal cycling measurements of 1-layer and 2-layer uninsulated coils
 - Tested up to $1.15I_c$ 2 to 6 thermal shock cycles
 - After thermal cycling, I_c increased but *n*-value decreased
 - Results inconclusive, but suggest little to no degradation

Acknowledgements

- Samuel Chung (summer intern)
- NASA Advanced Air Transport Technology (AATT) Project

References

- Jansen, R., Bowman, C., Jankovsky, A., Dyson, R., and Felder, J., "Overview of NASA Electrified Aircraft Propulsion (EAP) Research for Large Subsonic Transports," 53rd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, Atlanta, GA, AIAA 2017-4701, 2017. doi:10.2514/6.2017-4701.
- [7] Welstead, J., and Felder, J. L., "Conceptual design of a single-aisle turboelectric commercial transport with fuselage boundary layer ingestion," 54th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, San Diego, CA, AIAA 2016-1027, 2016. doi:10.2514/6.2016-1027.

Superconductor current & thermal limits

- Critical current $(I_C) = I_C(T, B, \theta)$
 - Datasheet values $\theta = 0^{\circ}$ and 90° are insufficient
- Datasheet specs de-rated twice: angular dependence & safety factor

Safety factor

±20% Estimate of wire variation

+ ±15% Modeling inaccuracy

±35% (≈1.5 safety factor)

National Aeronautics and Space Administration

Superconductor current & thermal limits

• Measurements at B = 2 T obtained from manufacturer

Optimization of rotor coil's geometry

- Optimized coil's geometry for given iron thickness & width by numerically maximizing # of turns
 - Rectangular coil cross section
 - Also outputs total length & cost of conductor, mass of iron+coil
 - 4 mm is optimal width of superconductor

Soft magnetic material (back iron)

Region available for containment structure and clearances

Preliminary design – double dovetail rotor teeth

Critical Current Testing – 1 layer coils

		Coil 1		Coil 2	
Test		<i>I</i> _с , А	n, –	<i>Ι</i> _c , Α	<i>n</i> , –
Before thermal cycling	I increasing	76.9	18.5	75.8	24.6
	I decreasing	76.6	21.0	75.9	23.2
After thermal cycling	I increasing	76.8	19.7	76.2	21.6
	I decreasing	76.9	19.7	76.3	21.8