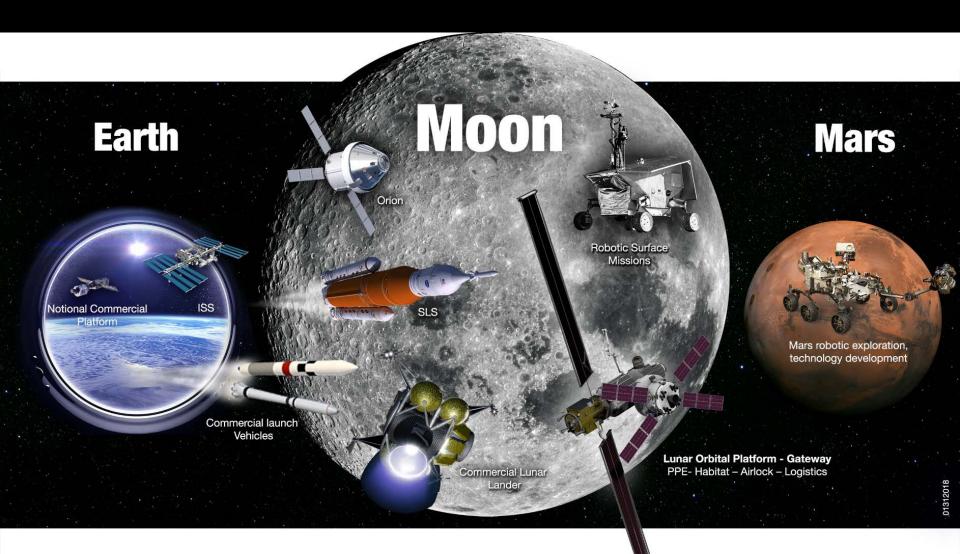
Autonomous Power Controller For the NASA Gateway

Jeffrey Csank
NASA Glenn Research Center
Cleveland, OH

2018 Turbine Engine Technology Symposium
Next Generation Intelligent (Electrical) Power Systems
Wednesday, September 12, 2018


Agenda

- Deep Space Exploration
 - Current NASA mission goals and objectives
 - Deep space human exploration challenge
- Autonomous Power Control
 - What is autonomous power control
 - Proposed solution
- Current Autonomous Power Control Capability
 - What have we accomplished to date
- Transition to Aeronautics
 - Apply this technology to aeronautics

NASA's Vision of Future of Human Exploration

In LEO

Commercial & International partnerships

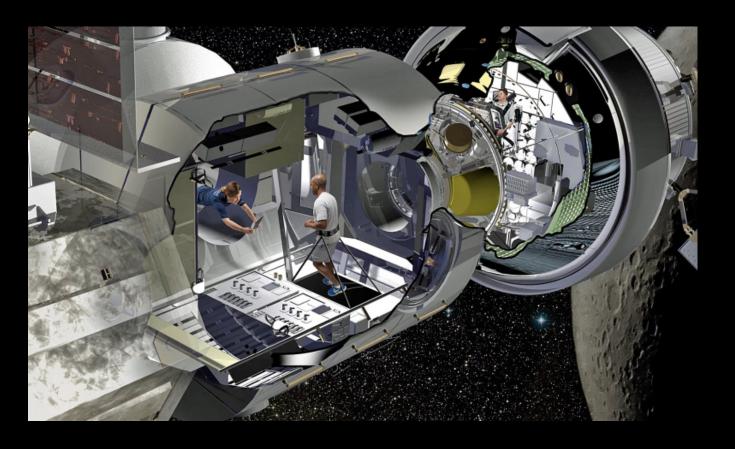
In Cislunar Space

A return to the moon for long-term exploration

On Mars

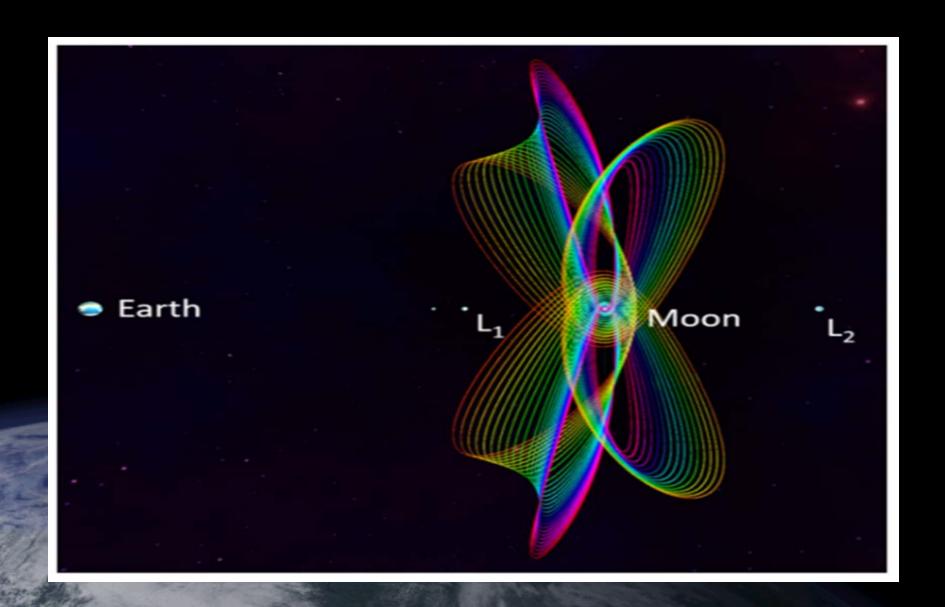
Research to inform future crewed missions

Gateway



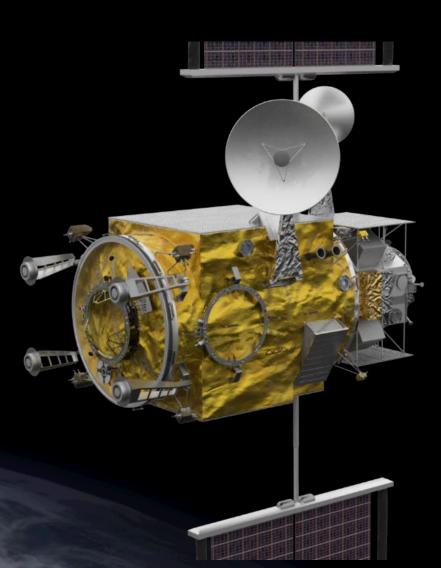
- Crew of 4 to 6
- Provide living space for long duration missions
 - 30 to 60 Days
- Solar Array / Battery System
 - 24+ KW Habitation
 - 39 kW for propulsion
- Potential to be operated in Low Lunar Orbit,
 Near Rectilinear Orbit or Deep Space
- Provides docking accommodation for multiple vehicles – resupply as well as landers
- Platform for the checkout and validation of advanced technologies
 - Advanced automation systems
 - Etc.

Deep Space Gateway

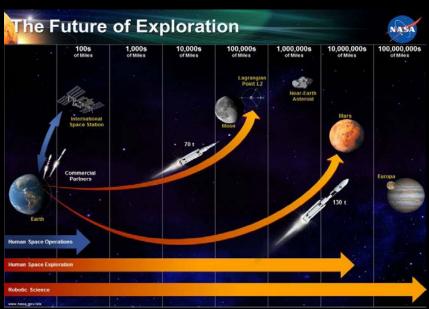


- Concept for DSG Habitation Element
 - Crew Quarters
 - Exercise
 - Experiments
 - Galley
 - Modular Equipment

NRHO Orbit for Gateway

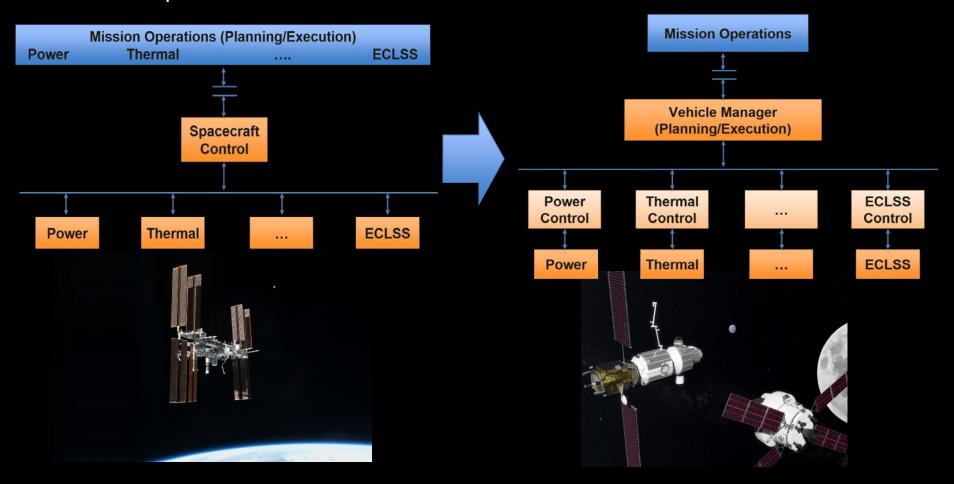


Power Propulsion Element


- Development led by NASA Glenn
- Provides 60+ kW of electric power
 - 60 + kW of Solar Array
 - 16 kW hr of batteries
 - 120 Vdc power
 - 27 kW to Habitat etc.
 - 39 kW to Thursters
- 4 Ion Thrusters
 - 600 milli-Newtons of thrust
 - 0.135 lbs. of thrust
 - Xenon propellant
- Lifetime 15 years

Deep Space Exploration Challenge

- Communication becomes a problem
 - Times are longer than any previous experience
- Power is your most critical system
 - Every system on the vehicle needs power
 - Electrical power needs a high level of availability and reliability
 - MUST operate autonomously


Mission	Communication Bandwidth	Communication Latency
ISS	300-800 Mbps (TDRS)	Real-time
Apollo / Orion	<2 Mbps (DSN)	1 to 2 seconds
Deep Space Vehicle	<2 Mbps (DSN)	15 to 45 minutes

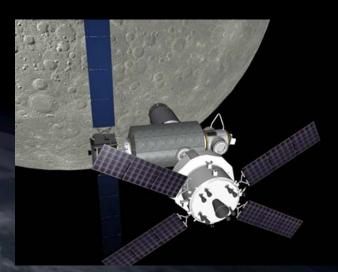
Traditional vs Autonomous Spacecraft Architecture

Traditional Spacecraft Architecture

Autonomous Spacecraft Architecture

Rely on automation and autonomous systems technology to safely operate spacecraft

What is an Autonomous Power System?


Power System Needs

- Operate safely at all times
- Service the highest priority loads within the constraints of the generation and distribution systems

Power System Control Needs

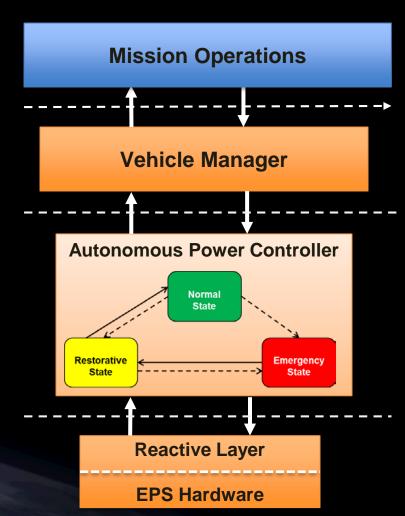
- Interact with the System (Vehicle) Manager to safely execute the mission
- Permit humans to consent to any operations / actions during habitation
- Oversee/control the power system to provide desired capability without human intervention

Vehicle Autonomous Power Control Architecture

Mission Operations

- Monitors vehicle operations
- Adjusts long term mission objectives

Vehicle Manager


- Plan vehicle operation (Load Schedules, etc) to achieve mission objectives
- Coordinate vehicle subsystems

Autonomous Power Controller

- Forecast energy availability and provide power to the highest priority loads
- Safely operate the EPS hardware.

Reactive Layer (Full Digital Control)

- Provides closed-loop control of the EPS hardware
- Protect EPS from hard faults (safe the system)

Autonomous Power Control System (Conceptual)

Autonomous Power Controller

Electrical Power System

Note: Future Capability

Executioner

- Oversee operation of the APC
- Manage APC system state

Maintenance, Mitigation, & Recovery

- Develop system configuration based on system state (fault)
- Shed loads based on priorities and power available
- Planned maintenance

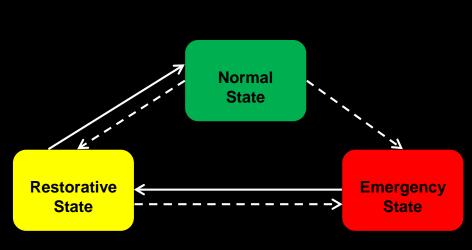
Fault Management Monitor and response to EPS faults Distributed fault management

Vehicle Manager

Reactive Layer (Hardware)

- Provide power system data
- Execute set points
- Safe hardware (automatic fault protection for hard faults)

Energy Management


- Predict power/energy availability into the future
- Monitor power generation and energy assets
- Optimize battery state of charge
- Evaluate load schedule for issues?

Database

- Store historical EPS data for advanced fault management
- Store current load schedule

Autonomous Control State Diagram

Controlled State Transition

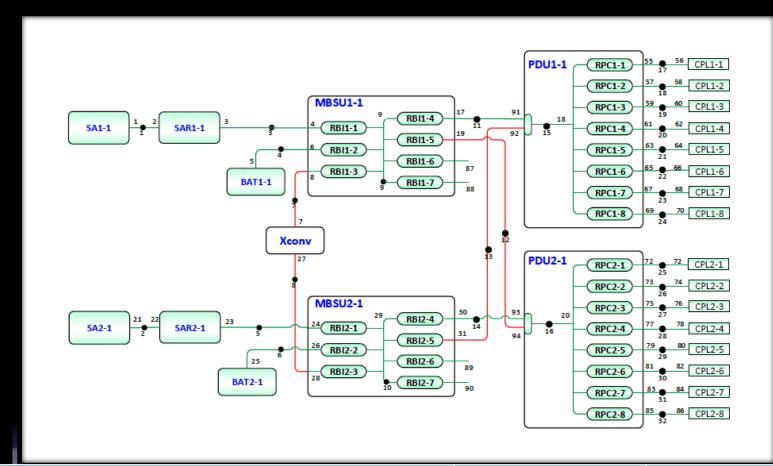
Uncontrolled State Transition

Normal State:

- System operating properly
- Calculates and provides an energy availability and power profile
- Analyzes proposed load schedules
- With no failures, continue indefinitely.

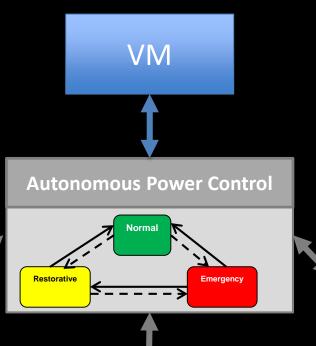
Emergency State:

- Failure has occurred in the EPS
- Reactive control will respond to any immediate faults and temporarily put the system in safe mode.
- APC reconfigures the system

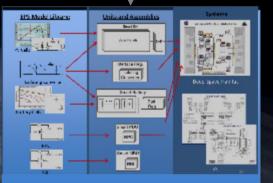

Restorative State:

- System is in a reduced power state and may not be servicing the complete normal load
- APC can perform all the operations of the normal state, with reduced power constraints.

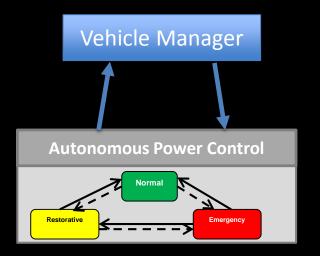
EPS 2-String System Architecture



Power System Ratings	Peak	Nominal
RPC Current Rating (Amps)	4	3.2
RPC Power Rating @ 120V (kW)	0.48	0.384
PDU Current Rating (Amps)	32	24
PDU Power Rating @ 120V (kW)	3.84	2.88
Total Power to Loads (kW)	7.68	5.76 ₁₆


System Integration Capability

JSC iPAS Test Bed



GRC Real Time Simulation

GRC Deep Space Vehicle Power System Test Bed

Demonstrations

Energy Availability (to VM)

Normal Mode

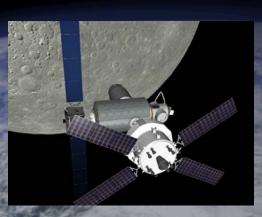
time	Peak (kw)	Nominal (kw)
1	7.68	5.76
2	7.68	5.76
3	7.68	5.76
4	7.68	5.76
24	7.68	5.76
Total	energy (kW t	u) 138.24

Load	Tu1	Tu2	Tu3	Tu4	Tu5
1	7	0	7	0	7
2	1	1	1	1	1
3	0	7	0	7	0
4	2	2	2	2	2
5	9	9	9	9	9
6	11	11	11	11	11
7	6	6	6	6	6
8	0	0	0	0	0
9	8	0	8	0	8
10	5	5	5	5	5
11	0	8	0	8	0
12	4	4	4	4	4
13	12	12	12	12	12
14	10	10	10	10	10
15	3	3	3	3	3
16	0	0	0	0	0

time	Peak (kw)	Nominal (kw)
1	7.68	2.88
2	7.68	2.88
3	7.68	2.88
4	7.68	2.88
24	7.68	2.88
THE REAL PROPERTY.	1500	A CONTRACTOR
Total e	nergy (kW t	u) 69.12

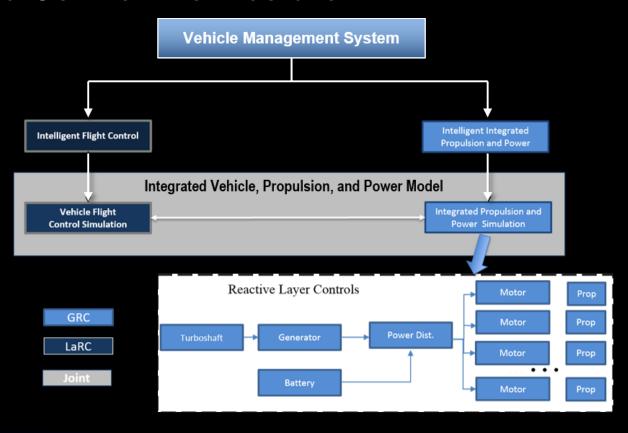
Load Schedule (from VM)

Load	Tu1	Tu2	Tu3	Tu4	Tu5
1	7	0	7	0	7
2	1	1	1	1	1
3	0	7	0	7	0
4	2	2	2	2	2
5	9	9	9	9	9
6	11	11	11	11	11
7	6	6	6	6	6
8	0	0	0	0	0
9	8	0	8	0	8
10	5	5	5	5	5
11	0	8	0	8	0
12	4	4	4	4	4
13	12	12	12	12	12
14	10	10	10	10	10
15	3	3	3	3	3
16	0	0	0	0	0


Load	Tu1	Tu2	Tu3	Tu4	Tu5
1	7	0	7	0	7
2	1	1	1	1	1
3	0	7	0	7	0
4	2	2	2	2	2
5	0	0	0	0	0
6	0	0	0	0	0
7	6	6	6	6	6
8	0	0	0	0	0
9	8	0	8	0	8
10	5	5	5	5	5
11	0	8	0	8	0
12	4	4	4	4	4
13	0	0	0	0	0
14	0	0	0	0	0
15	3	3	3	3	3
16	0	0	0	0	0

Power Autonomy in Aeronautics

- Synergy between Space and Aeronautics regarding autonomous power systems
- Transfer Space technologies to Aeronautics
 - Automation architecture
 - Algorithms for
 - Electrical power system fault management
 - Energy management
 - System reconfiguration
 - Platform for algorithm execution and coordination

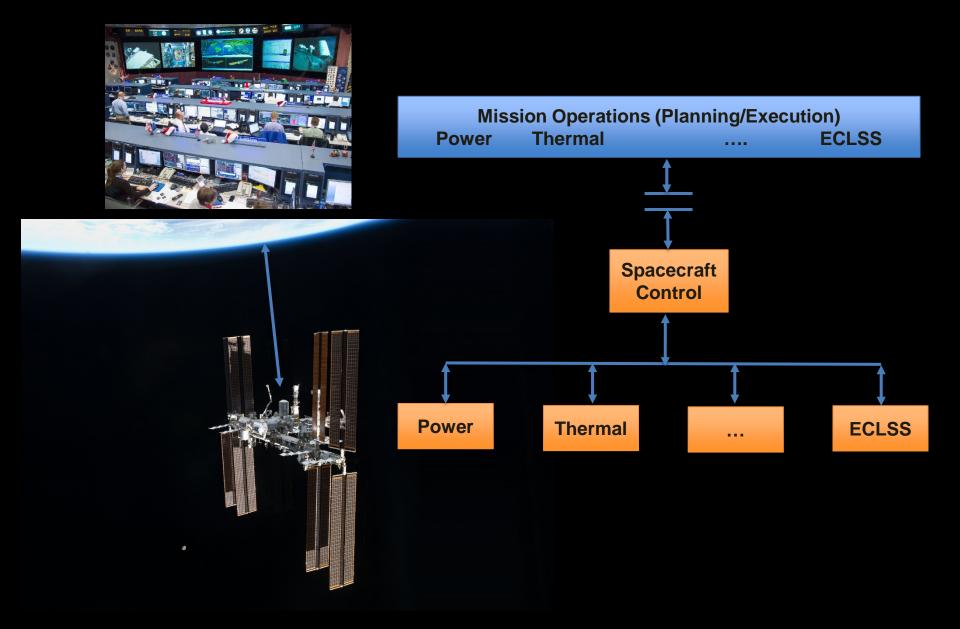


Federated Control Architecture

Distributed or federated control architecture

- Individual "intelligent" subsystem controllers
- Coordinated control/response
- Decentralized decision making
- Rapid response of local subsystem
- More efficient computation and communication

Conclusion


- Autonomous Power Systems capability is required for long term operation far from earth
- •Developed an initial autonomous power controller and demonstrated required capability to safely operate an electrical power system without human operator in the loop.
- •Technology developed for deep space exploration vehicles can be transition to aeronautics for use with Hybrid Electric Airplanes and other applications such as operating micro-grids.

Typical Spacecraft Control Architecture

