

Analysis of Near Rectilinear Halo Orbit Insertion with a 40-kW Solar Electric Propulsion System

Steven L. McCarty, Waldy K. Sjauw, Laura M. Burke, Melissa L. McGuire NASA Glenn Research Center

> 2018 AAS/AIAA Astrodynamics Specialist Conference August 19-23, 2018 Snowbird, UT

NASA

- Purpose
- SLS Co-Manifested Payload to NRHO
 - Reference Transfer
 - Date Sensitivity

- Methodology
- Results
- Conclusion

Purpose

- SLS Co-Manifested Payload to NRHO
 - Reference Transfer
 - Date Sensitivity
- Earth Elliptical Orbit to NRHO
 - Methodology
 - Results
- Conclusion

Purpose

9:2 Lunar Synodic Resonant L2 Southern NRHO (L2S NRHO):

1. SLS Co-Manifested Payload

- TOF < 100 days</p>
- Constrained to Upper Stage Disposal Trajectory
- Understand Launch Date Sensitivity

- Low thrust spiral after commercial launch
- Trade NRHO mass, TOF, propellant, solar array degradation

NASA

- Purpose
- SLS Co-Manifested Payload to NRHO
 - Reference Transfer
 - Date Sensitivity
- Earth Elliptical Orbit to NRHO
 - Methodology
 - Results
- Conclusion

Reference Insertion

Prop. Mass (kg)	TOF (days)	ΔV (m/s)
106.9	76	370

NASA

- Purpose
- SLS Co-Manifested Payload to NRHO
 - Reference Transfer
 - Date Sensitivity
- Earth Elliptical Orbit to NRHO
 - Methodology
 - Results
- Conclusion

Launch Date Sensitivity

Launch every day for 6 months

Launch Date Sensitivity

- Launch every day for 6 months
- Peaks occur every 15 days, but why?

Is There a Pattern?

NASA

Reference Trajectory

Sun-Earth Rotating Frame

Is There a Pattern?

6-Months of Solutions

Sun-Earth Rotating Frame

Is There a Pattern?

Sun-Earth Rotating Frame

Solar Quadrants and Solar Angle

- Divide Sun-Earth rotating frame into quadrants (I – IV)
- Solar Angle defined by ϕ
- Moon traverses through all four quadrants in 1 synodic period (29.5 days)

Propellant vs. Solar Angle (ϕ) at Apogee

٠

Sun-Earth Rotating Frame

• Why? Solar gravity raises perigee in quadrants II and IV and lowers perigee in I and III

14

NASA

- Purpose
- SLS Co-Manifested Payload to NRHO
 - Reference Transfer
 - Date Sensitivity

- Methodology
- Results
- Conclusion

16

- Start with a given mass at a fixed intermediate state (★)
- 2. Use OTIS with optimal closed loop targeting to optimize spiral in reverse (min ΔV)
- 3. Generate data over range of masses and apogee altitudes (perigee altitude = 400 km)
- 4. Relevant Quantities:
 - TOF
 - Propellant Mass
 - ΔV
 - BOL Power

NASA

- Purpose
- SLS Co-Manifested Payload to NRHO
 - Reference Transfer
 - Date Sensitivity

- Methodology
- Results
- Conclusion

6,500 kg to NRHO in 180 days

F9 & AV Results: Mass and Time

Also generate results specific to Atlas V 551 and Falcon 9 performance

• Also generate results specific to Atlas V 551 and Falcon 9 performance

F9 & AV Results: Power

BOL operating power required to guarantee 41 kW in NRHO

F9 & AV Results: Power

BOL operating power required to guarantee 41 kW in NRHO

F9 & AV Results: Power

BOL operating power required to guarantee 41 kW in NRHO

NASA

- Purpose
- SLS Co-Manifested Payload to NRHO
 - Reference Transfer
 - Date Sensitivity
- Earth Elliptical Orbit to NRHO
 - Methodology
 - Results
- Conclusion

Conclusion

Analyzed two NRHO insertion options:

- 1. SLS Co-Manifested Payload
 - Two monthly optimal launch opportunities
 - Trends applicable to other TLI launches

- 2. Commercial Launch w/ Spiral Out
 - Large trade space:
 - NRHO mass
 - TOF
 - Propellant mass
 - Solar array degradation
 - Launch vehicle performance

Thank You.