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Review of multilayer insulation (also called
superinsulation) fundamentals

— Basic construction

— Types of MLI models

Introduction of advanced concepts

— Non-gray

— Seams

— Validating Thermal Desktop

Incoporating these concepts into Thermal Desktop
models

Discussion of results
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Numerical (commercial code, or custom code)

Floating shields analytical model
o(T} - T3)

q= N—1 (22)
]./E]_ —|— ]./Eg — ]. —|—Z“=1 (1/(’5“2 —|— l/EI:ﬂ,—I—]]] — ].) —|— ]./E‘.‘\'i’:g — 1/(':2 — 1
Semi-empirical models
" o n3 ,. ‘
q = %Imﬂn(ﬂl —T:) + ; EI;'.!I:-T ? [Tfidfd - TCMHJ (38)

Polynomial fits

q=h(T) —T:) + f:?ffJ(TI:l ~ T

q=cs(T2 —T?) + cg(T2 —T3) + c5(T1.67 — T2.67)
lterative separated mode
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Analytical solution
90
128.454
147.986
161.873
172.896
182.14
190.159
197.275
203.695
209.56
214.97
220

-5.34 W/m?

Thermal Desktop solution

90.0000
128.9190
148.4690
162.3760
173.4180
182.6130
190.5390
197.5990
203.9480
209.7310
215.0610
220.0000

-5.34 W/m?
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Pre-requisites
1.

2.

3.

A gray surface has the e

simplifying property that the
absorptivity may be reasonably

assumed to equal the emissivity ° ﬁ\

Either the irradiation is diffuse or the surface is
diffuse E
Spectral properties of surface are nearly constant
over spectral region of interest

Irradiation and surface emission occur in the

bounds of the spectral region of interest

A: A

[ e (A T)E,, (A, T)dA
E,(T)

e(T) = -
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Siegel & Howell
Problem 8-2

Solution: 140,500 W/m?

0 a—)———

T, = 120K
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Figure 8-4 Example of heat transfer across space between infinite parallel plates having spectrally
dependent emissivities.
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Note: To avoid a runtime error, the
temperatures must be monotonically
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« J. Srinivasan [24] observed that their dewar suffered

roughly 66% more heat leak when filled with LN2
than with LH2 (no blanket, just a thermos type setup)

|.LA. Black and P.E. Glaser [27] reported 41% more

heat transfer with a 1 inch thick blanket in their 35-
liter dewar

Thermal desktop gray analysis 10 layer cylinder showed
the same heat leak for either the 77K or the 20K
boundary condition

What’s going on here? The hydrogen is
colder and the surroundings are the same
temperature. Why is liquid nitrogen losing
more heat?
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& Srinivasan’s approach (Hagen-Rubens eq){&&
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Non-gray aluminumized cryogenic dewar
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& Paradox solved in Thermal Desktop

« Two concentric spheres, each with one boundary node

— Outer boundary node at 300K, inner at either 77K (LN2) or 20K
(LH2)

— Radius Imand 1.1m

 Solution:
— 16.86 W @ LH2

—28.24 W @ LN2!!!

— This works out to 68% increase, matching the expected
results

Bivanate Table Input

Enter walues of Temperatures[E] on the first line
For additional lines, enter a aingle wavelengths[micro-m] followed by walues of
emissivity

20 70 150 300
0 0.2 0.36 0.457 0.643
5 0.00596 0.018 0.026 0.037
10 0.0062 0.013 0.015 0.026
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Heat flux should be roughly
constant, if gray assumption holds
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g%  Modeling MLI with Thermal Desktop  &L&x

* Inner cold surface area was 1 square meter

« Layer thickness 2.5x107(-5) m

« Ten layers of insulation

e Layer spacing 1 mm

« Two fixed dirichlet (prescribed) conditions at 90K and
220K unless otherwise stated

« 1,000,000 rays (chosen after finding at least 100,000
rays were acceptable based on test runs)

« Aluminized kapton, 1 mil, BOL with IR emissivity of 0.61
(inner surface matches this value), unless otherwise
stated
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\

§/04% The effectiveness of using a patch s

« Surroundings added as a very closely spaced surface
near the outer layer of the MLI stack

e same emissivity of 0.61

* Resulting heat leak -5.78 W/m2
— Close to ideal, floating shields case with no seams
— Suggests that patching over seams ought to be very effective
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Table 1. Superinsulation System Equations

2 2
Double-Aluminized Mylar- o (T, +T ) (T, +T ) t
" v —9% h "¢ h "¢
Silk Netting (2 layers) ke = 1.13x10"9% Ty ¥ omou— = €
(N-1)[(2/€)-1]

o (T2 +72) (T, + Ty t
NRC-2 k, = 5.90x10"12({)2 T, + = R
(N-1) [(1/eg)H1/€p) -1

2,m2 m B
" ! N)QT . G(Th+Tc) ([h +T,)t
Superfloc el O T * o T/ ey o]

2 2
T247%) (T, +T ) ¢
Double-Aluminized Mylar- 1 T(Ty +Ty) (Ty +T )

ke = 6.0x10" 11 % ¢

o

Nylon Net (1 layer)

Double- Aluminized Mylar-
Dexiglas

Dougle-Aluminized Mylar-
Tissuglas

Dougle- Aluminized Crinkled
Mylar- Tissuglas

m

T TND [@/eoe1T

2. B
2
2.70(T) +T ) (T, +T)t

R -12 5.2
l‘e 4.58% 10 N) Tm +W

o2 2
1.70 (T 4T \(T, + T )t

(N-1)[(2/¢)-1]

2
ke = 1.83x107 2 ®)*1, +

2 2
1. /o(Th + TC) ('I‘h + Tc) t

— ~12 =2 .
ke =4.6x1071% (R) s ®-Die/o1]

2 2
o (T +T)(T, +T )t

Double-Aluminized Mylar- 14 5, 5.1
k. =19 -14 T _ O
Open-Cell Foam e m * (N-1) [(2/¢) -1]
T2 T2 T T
8 " +
Double-Aluminized Mylar- k. =3.5x10-15 :1)5'7T " i n TN h c)t
Closed-Cell Foam g ¢ m " N-1) [ (2/€)-1]
§ = effective thermal c&ﬁctivity T, =cold temperature

= 0o, of radiation shields/unit thickness N = no. of radiation shields

m = Mean temperature

9 = Stefan Boltzmann constant
i Th = hot tenperature

t = thickness of insulation
€ =emissivity
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« Contacting shields, 3 degree opening, large isothermal
surroundings, gray-diffuse
— Contact conductance 0.05 W/m2/K
— Resulting heat leak -6.66 W/m2 (roughly 10% more than floating)
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Figure T5:.Cage T-layerd, Figure 41: Case 1, layer 1.
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More contact!

« Contact conductance increased by order of magnitude to
0.5 W/m2/K

— Resulting heat leak -11.97 W/m2
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Thermal radiation occurs between 10~! pm and 10? pm. This encompasses part
of the ultraviolet spectrum, the entire visible light spectrum, and the entire in-
frared spectrum. To understand thermal radiation, the concept of the blackbody
and its properties should be defined as follows.

1. A blackbody absorbs all incident radiation, regardless of wavelength and
direction

2. For a preseribed temperature and wavelength, no surface can emit more
energy than a blackbody.

3. Although the radiation emitted by a blackbody is a function of wavelength
and temperature, it is independent of direction. That is, the blackbody is
a diffuse emitter.

The blackbody speetral intensity is well known, having first been determined
by Plank?.

LT = e &)
B N5 (exFF) — 1
Since the blackbody is by definition a diffuse emitter, it follows that the spec-
tral emissive power, after integration, is simply the spectral intensity multiplied
by .

E,,(\T) =I,,(\T) (3)

An example of the Plank distribution plotted for a temperature of 20K is
shown in 2.

5x1075
4x1073 “\
Exp20K) 31077 \
w \
JEN. S UN \
11073 \\
/ \
v 2
0.1 1 10 100 1x10°

>
pm

Figure 2: The famous Plank blackbody distribution, showing the emission spectrum
for some blackbody at a temperature of 20K. This curve will shift to the
left as the temperature of the blackbody increases.

By integrating 3 over the wavelength from zero to infinity, the Stefan-Boltzmann
Law is obtained.

Eb(T):UT“ (5)
BE_(MT
Fas(ﬂsﬁzT)zj %d) o

As an example, for 90K, considering a band up to 250 pm would account
for 99% of the energy emitted. For 220K, a band up to 102 um needs to be
considered to account for 99% of the energy (these results are shown in Figure
3).

Relevant to eryogenic superinsulation heat transfer, consider that, in Figure
3, less than 1% of the energy is in the band from 250 ym to 1000 pm for the
90K case. The wavelength here is on the order of the spacing of the insulation
(roughly 10 layers per centimeter means layer spacing is on the order of 0.1 cm

My oD
Ao h
SRedbale X

c-T4

Fat tox2(Mo2T) =
M

Fa1_to_x2(0nm,250um,90K) = 0.99058435978
Fx1_to_x2(0hm, 102um, 220K) = 099050727574
Fx1_to_2(2501m, 1000um, 20K) = 0352060993733
Fy1_to_2(1000jm, 10000j1m,20K) = 0.014433547225
Fx1_to_x2(0nm, 250um, 2K) = 0.000000001308
Fa1_to_x2(250m, 1000, 2K) = 0066875394433
Fy1_to_2(1000m, 10000ym, 2K) = 0919737281264

Figure 3: A computer algebra system, like MathCAD, is very useful to avoid the
table lookup typically associated with band fractions.

which equals 1000 pm). At 20K, the energy in the 250 pm to 1000 pm band
jumps drastically to 35%, with 1% of the energy having a wavelength between
1000 pm and 10000 pm, which is greater than the spacing the layers. At 2K,
92% of the energy has a wavelength in this very long band from 1000 pm and
10000 pm which is equivalent to 0.1 cm and 1em.
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Srinivasan math

1
<
o ) 273
. 2 -t . . -
e | pm )7 | 273K { pm | 273K
E hN 72 ) = 365 —— - o —
FaalXtres) =3 L cm} ox ) \flem) A

L4
2108 Wo(m)_ '('i’")

Cy= 374 €= 1439 10%umK
i)
G
AT, =
Aol™To) [t
s| AT
Nie ©-1)

Eppl kft-’el"s_* = 13-€yp M t,re273)

6

Expa 0 = ExpMt,282:10” C02-cm)

(ep| Apm. Ty} — ey A-pm,Ty))

q,(T}.Ty) = n . &y pm

+ ==1
Expal Mim. Ty Eypa| Aepm.Ty)

. - w
qa(300K,90K) = 3616 —

m

q4(300K . 77K)

Gratioa = 83

q,(300K ,20K) -

Figure 21: Solution to the nongray dewar problem following the approach of Srini-

vasan [24] which keeps a two term approximation of the Hagen-Rubens
relation.
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