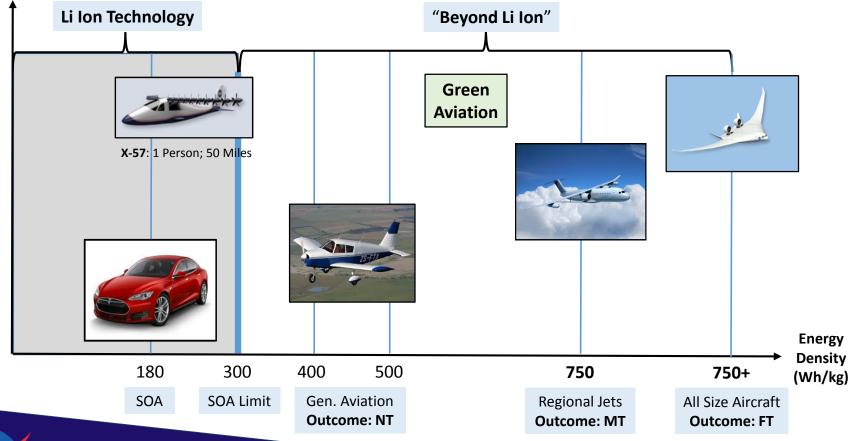
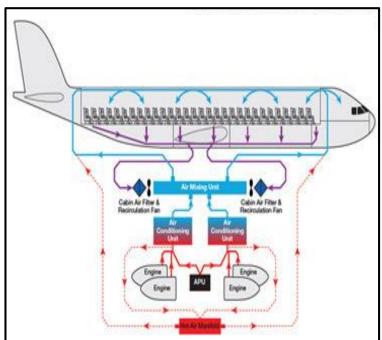

Integrated Computational-Experimental Development of Lithium-Air Batteries for Electric Aircraft


Dr. Vadim Lvovich, NASA Glenn Research Center, Cleveland, Ohio, 44135 Dr. John Lawson, NASA Ames Research Center, Mountain View, CA 94035 External Partners: NASA Armstrong, UC Berkeley, Stanford, Carnegie-Mellon, IBM Almaden

Green Aviation Battery Requirements

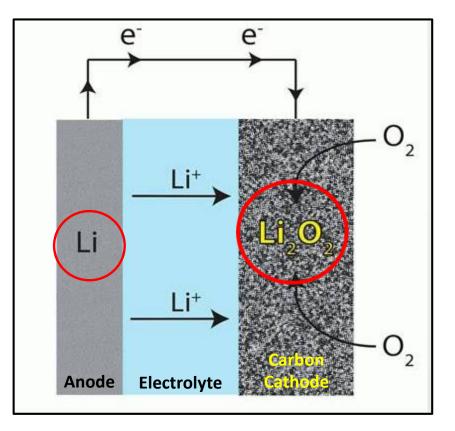
Major requirement is: High Energy Density

Other requirements are **rechargeable**, **safety**, power, recharge time, cost, etc.


Big Question

Can we design and build a viable battery which satisfies the significant requirements of electric aircraft applications?

Li-Air batteries are a <u>unique</u> fit for electric aircraft applications


Li-Air has the <u>highest</u> theoretical battery energy density

Aircraft already have on-board oxygen systems needed for Li-Air batteries that can be leveraged for further **mass reduction**

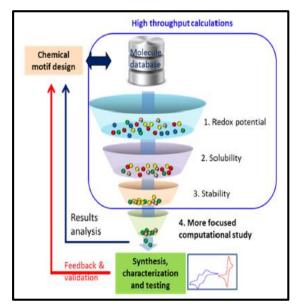
Major Li-Air Challenge

Li₂O₂ and Li are <u>Hyper</u>-Reactive

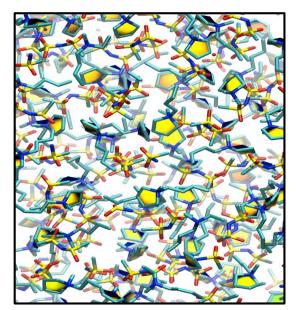
Component decomposition is the limiting factor for Li-Air batteries

Feasibility Objective

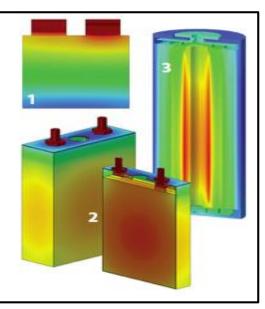
Design and fabricate <u>new stable components</u> for Li-Air batteries that achieve energy densities of <u>400</u>+ Wh/kg and <u>100</u>+ recharges and test them in an electric aircraft (UAV) flight



I. Computation


SOA Li-Air research uses highly empirical "trial-and-error" approach

We are using predictive modeling at multiple scales leveraging NASA supercomputing to accelerate development


NASA Vision 2040 for Integrated Multiscale Materials and Systems Modeling and Simulations

High-throughput screening (ARC, CMU)

Materials simulations (ARC)

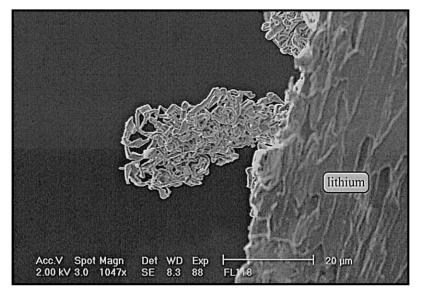
Multiphysics analysis (ARC, Purdue)

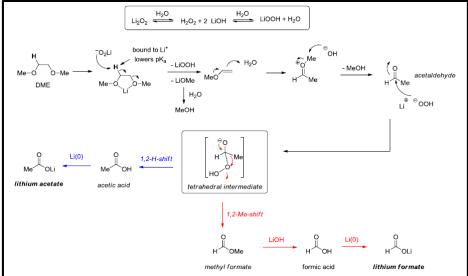
II. New Materials

SOA Li-Air research uses commercial 'off-the-shelf' materials (inadequate) for electrolytes

We design, fabricate and integrate into Li-Air batteries new stable electrolytes tailored for this reactive environment

Advanced fabrication (GRC, Berkeley, IBM)


Unique characterization facilities (Berkeley, Stanford)


III. Decomposition Mechanisms

SOA Li-Air research has very poor understanding of electrolyte decomposition mechanisms

We are coupling computational chemistry with experimentation to discover "*electrolyte design rules*"

Experimental analysis (GRC, IBM)

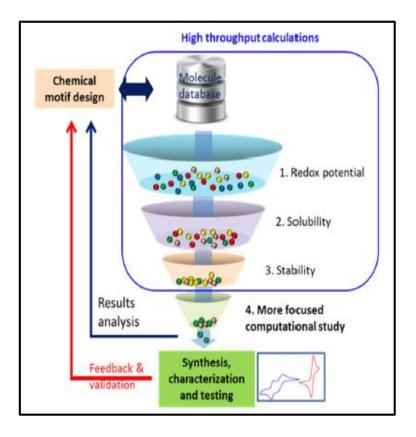
Chemical mechanistic pathways (ARC, IBM)

IV. Electric Flight Test and Analysis

SOA Li-Air research confined to academic, laboratory studies

We are modeling the system requirements, instrument, fly and analyze data from an electric flight test (UVA) with Li-Air batteries

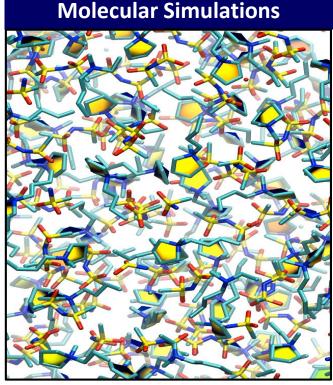
Electric flight systems modeling, instrumentation, flight and analysis (AFRC)

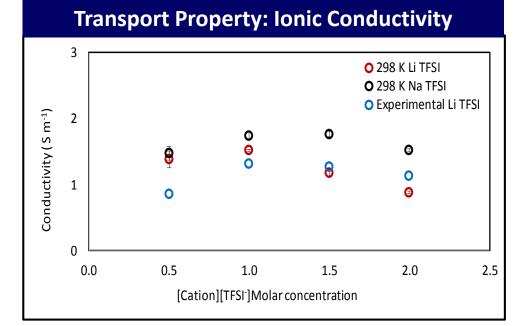

Electrolyte Data Mining & Machine Learning

Electrolyte Properties:

Ionization potential, electron affinity Boiling point, flash point, viscosity Solvation energies Acid dissociation constant pK_a

"Descriptors" for Data Mining:


Boiling point >= 323 K Flash point >= 323 K Ionization potential <= -10.5 eV [DME ~ -10.3] Acid dissociation constant $pK_a => 30$ [ACN ~ 30] $E_{sol}(Li^+) <= 10.0$ kcal/mol [ACN ~ 12] $E_{sol}(O_2) <= -1.8$ kcal/mol [DME ~ -1.65]


Databases with 10 million entries mined for Li-Air electrolyte properties

Electrolyte Modeling

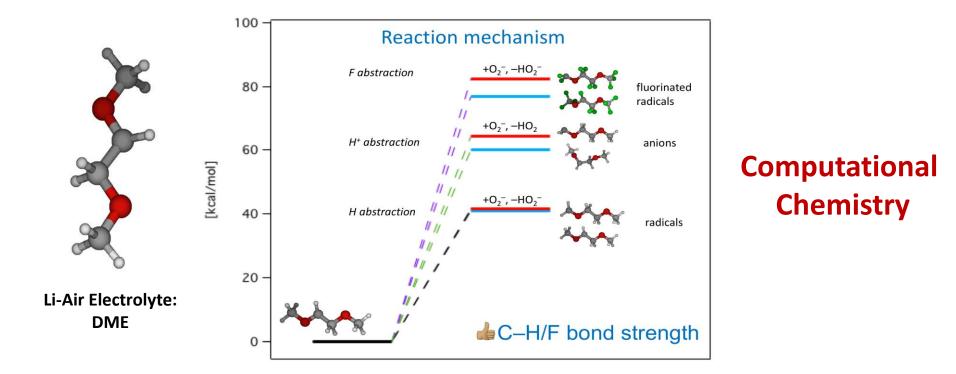
High fidelity molecular dynamics

Excellent agreement between simulations and experiments

Chemical structure-property relationships lead to design rules

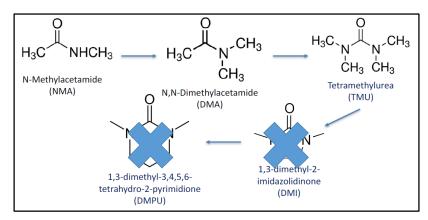
Ultimately, we want to design component materials on the computer: Virtual Design

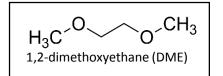
Electrolyte Experimental Evaluation

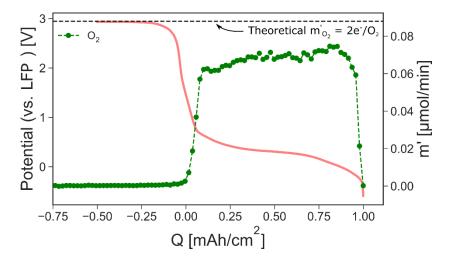

Family	Family Representatives	Progress/Advantages
Glymes	DME (1,2-dimethoxyethane) / TEGDME	Current state-of-the-art
Ionic Liquids	EMIM TFSI	Poor lithium stripping
	PYR14 TFSI	Lower charge overpotentials, Low volatility DEMS/NMR required
Phosphoramides	HMPA (Hexamethylphosphoramide) Tris(N,N-tetramethylene)phosphoric acid triamide	High Donor Number, Poor efficiency in DEMS High Donor Number, Increased stability with anode over HMPA NMR/DEMS required
Ureas	DMPU (1,3-Dimethyl-3,4,5,6-tetrahydro-2- pyrimidinone) DMI (1,3-Dimethyl-2-imidazolidinone)	Stable NMR against lithium peroxide, Poor efficiency in DEMS Stable NMR against lithium peroxide DEMS required
Fluorinated Compounds	Perfluorotetraglyme	Under investigation

New class of materials being considered: molten, inorganic electrolytes

Electrolyte Stability Chemistry


Decomposition initiates by H atom removal

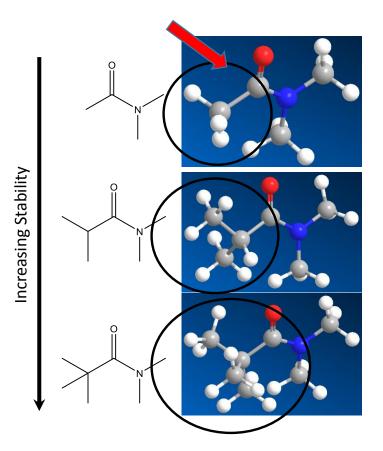

H atoms replaced by F atoms for more stable electrolyte – design rule



Systematic Study of the Stability of New Electrolytes: Amides and Ureas

Acetamides and ureas are more stable in Li-O₂ cells compared to previous SOA electrolyte DME

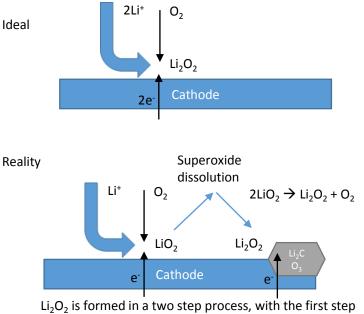
DEMS analysis of a Li-O_2 cell with **DMA**. Molar flux of O_2 is closer to the theoretical rate showing improved performance.


Acetamide and Urea Stability and their Degradation

Solvent	LiNO ₃ [M]	Cathode	OER/ORR	
1,2-dimethoxyethane (DME)	0.7	XC72 (PTFE-bound) on SS-mesh	0.78	<-SOA
N-Methylacetamide (NMA)	1		0.96	
N,N-dimethylacetamide (DMA)	1		0.97	
Tetramethylurea (TMU)	1		0.85	

Reversibility quantified using OER/ORR (oxygen evolution/oxygen reduction). Acetamides has OER/ORR ~25 % improvement to DME. However, parasitic products are still form during cell operation.

Steric Hindrance Design Rule for DMA

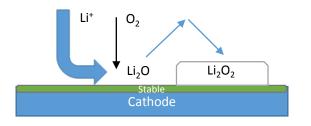


Hypothesis: steric hindrance limits lithium superoxide attack

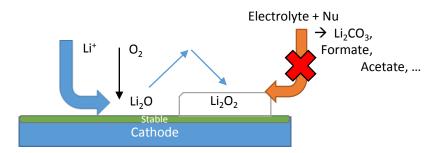
Cathode Development

Challenges

 Li_2O_2 is formed in a two step process, with the first step forming lithium superoxide, that can escape into the electrolyte


- One-step e⁻ transfer generates Lithium Superoxide (LiO₂) which is a strong nucleophile
- Dissolution of superoxide from cathode surface
 - Advantage: Allows for deposition of Li2O2 without direct e⁻ transport
 - Disadvantage: Releases a highly reactive species into the electrolyte which must either recombine or react further
- Nucleophiles generated result in decomposition of carbon cathode and electrolyte forming Li₂CO₃ among other products
 - ~40% CO2 from Carbon Cathode 60% from Electrolyte¹
- Li₂CO₃ formed creates a passivation layer making it difficult to remove Li₂O₂, hurting reversibility
- Li₂CO₃ is removed at higher potentials, but generates CO₂ resulting in loss of active material (O₂)

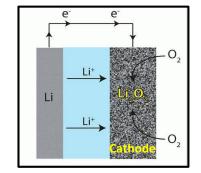
1 McCloskey, B.D., et al. J. Phys. Chem. Lett. 4, 17, 2989-2993

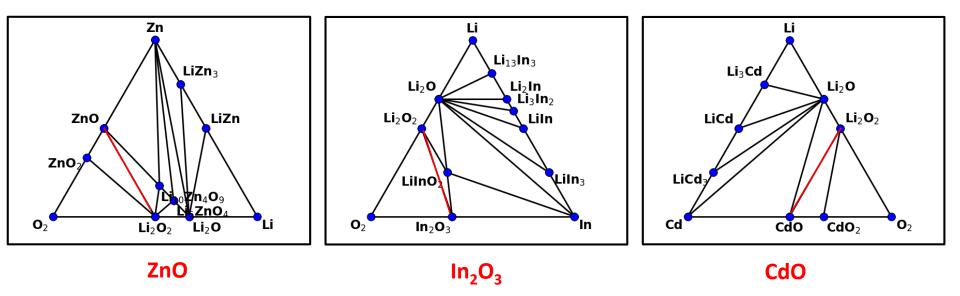

Cathode Development

Research Goals

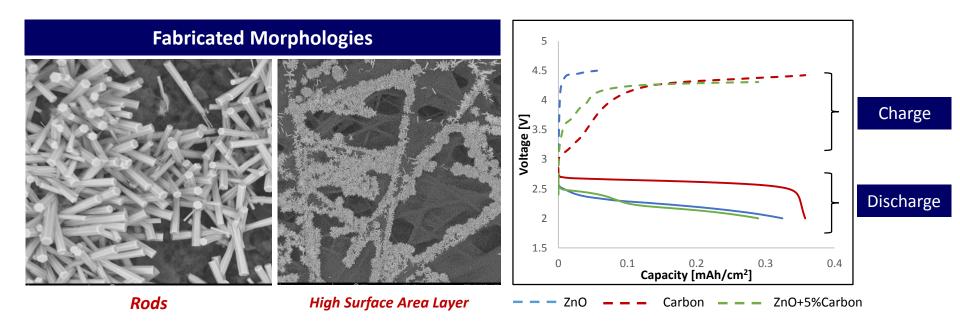
Task 1:

• Replace carbon cathode with oxidative resistive material

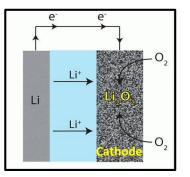

Task 2:

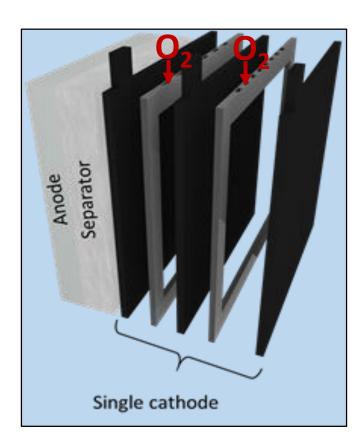

• Identify electrolytes with increased stability to nucleophilic attack/oxidation

Cathode Coatings



Phase diagrams suggest stable cathode coatings Transparent conducting oxides (TCO) are especially promising


Fabricated ZnO Coatings



ZnO is stable but has lower electrical conductivity Next step: doping ZnO to improve conductivity and maintain stability

Li-Air Battery Pack for Electric Aircraft

Alternating O₂ and cathode layers

Novel Li-Air battery <u>architectures</u> for high power needed by aircraft Oxygen must be delivered efficiently to cathode surface

Summary

- **Big Question**: Can we design and build a viable battery which satisfies the significant requirements of electric aircraft applications?
- Li-Air Batteries have high theoretical energies and can leverage onboard oxygen systems
- Major Challenge of Li-Air: Electrolytes are limiting factor for practical energy densities, rechargeability and safety
- Feasiblity Objective: Design and fabricate new stable electrolytes for Li-Air batteries with energy densities of 400+ Wh/kg and 100 recharges and test them in an electric (UAV) flight
- Li-Air Dream Team: Unprecedented team of experts from NASA, DOE, academia, industry
- Technical Thrust Areas: Computation, New Materials, Mechanisms, Flight Application
- Progress:
 - Electrolyte data mining; materials simulations; computational chemistry
 - Electrolyte evaluation: inorganic electrolytes may be promising
 - Cathode coatings: transparent conducting oxide coatings may be promising
 - Li-Air cell/pack architectures will be required for high power

Acknowledgements

ARC Team	GRC Team		
John Lawson (PI)	Vadim Lvovich (PI)		
Charles Bauschlicher	Rocco Viggiano		
Jusin Haskins	Donald Dornbusch		
Eve Papajak	Fred Dynys		
Lauren Abbott	James Wu		
Tane Boghozian	Baochau Nguyen		
Balachandran Radhakrishnan	William Bennett		
Mohit Meta			

UC Berkeley Team

Brian McClosky

Kristian Knudsen

Colin Burke

Pedro Arrechea

