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Green Aviation Battery Requirements

Other requirements are rechargeable, safety, power, recharge time, cost, etc.

Major requirement is: High Energy Density

Energy 
Density
(Wh/kg)180 300 400 500 750

SOA Limit Gen. Aviation 
Outcome: NT

Regional Jets 
Outcome: MT

Li Ion Technology “Beyond Li Ion”

Green 
Aviation

SOA All Size Aircraft 
Outcome: FT

750+

X-57: 1 Person; 50 Miles
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Big Question

Li-Air batteries are a unique fit for electric aircraft applications    

Can we design and build a viable battery which satisfies the significant 
requirements of  electric aircraft applications?

Aircraft already have on-board oxygen 
systems needed for Li-Air batteries that can 

be leveraged for further mass reduction

Li-Air has the highest theoretical battery 
energy density
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Major Li-Air Challenge 

Li2O2 and Li are Hyper-Reactive

Component decomposition is the limiting factor for Li-Air batteries

Anode Electrolyte
Carbon 

Cathode
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Feasibility Objective

Design and fabricate new stable components for Li-
Air batteries that achieve energy densities of 400+ 
Wh/kg and 100+ recharges and test them in an 
electric aircraft (UAV) flight
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I. Computation

High-throughput screening (ARC, CMU) Materials simulations (ARC) Multiphysics analysis (ARC, Purdue)

We are using predictive modeling at multiple scales leveraging 
NASA supercomputing to accelerate development

SOA Li-Air research uses highly empirical “trial-and-error” approach

NASA Vision 2040 for Integrated Multiscale Materials and Systems Modeling and Simulations
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II. New Materials

We design, fabricate and integrate into Li-Air batteries new 
stable electrolytes tailored for this reactive environment 

SOA Li-Air research uses commercial ‘off-the-shelf’ materials (inadequate) for electrolytes

Advanced fabrication (GRC, Berkeley, IBM) Unique characterization facilities (Berkeley, Stanford)
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III. Decomposition Mechanisms

We are coupling computational chemistry with experimentation              
to discover “electrolyte design rules” 

Chemical mechanistic pathways (ARC, IBM)Experimental analysis (GRC, IBM)

SOA Li-Air research has very poor understanding of electrolyte decomposition mechanisms
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IV. Electric Flight Test and Analysis

We are modeling the system requirements, instrument, fly and 
analyze data from an electric flight test (UVA) with Li-Air batteries

Electric flight systems modeling, 
instrumentation, flight and analysis (AFRC)

SOA Li-Air research confined to academic, laboratory studies
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Electrolyte Properties:
Ionization potential, electron affinity

Boiling point, flash point, viscosity

Solvation energies

Acid dissociation constant pKa

“Descriptors” for Data Mining:

Boiling point >= 323 K 

Flash point >= 323 K

Ionization potential <= -10.5 eV [ DME ~ -10.3] 

Acid dissociation constant pKa => 30 [ ACN ~ 30]

Esol(Li+) <= 10.0 kcal/mol [ACN ~ 12]

Esol(O2) <= -1.8 kcal/mol [DME ~ -1.65]

Electrolyte Data Mining & Machine Learning

Databases with 10 million entries mined for Li-Air electrolyte properties
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Electrolyte Modeling
Molecular Simulations
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Transport Property: Ionic Conductivity

High fidelity molecular dynamics

Excellent agreement between simulations and experiments

Chemical structure-property relationships lead to design rules

Ultimately, we want to design component materials on the computer: Virtual Design
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Family Family Representatives Progress/Advantages

Glymes DME (1,2-dimethoxyethane) / TEGDME Current state-of-the-art

Ionic Liquids

EMIM TFSI Poor lithium stripping

PYR14 TFSI
Lower charge overpotentials, Low volatility
DEMS/NMR required

Phosphoramides
HMPA (Hexamethylphosphoramide)

High Donor Number,
Poor efficiency in DEMS

Tris(N,N-tetramethylene)phosphoric 
acid triamide

High Donor Number,
Increased stability with anode over HMPA
NMR/DEMS required

Ureas

DMPU (1,3-Dimethyl-3,4,5,6-tetrahydro-2-
pyrimidinone)

Stable NMR against lithium peroxide,
Poor efficiency in DEMS

DMI (1,3-Dimethyl-2-imidazolidinone)

Stable NMR against lithium peroxide
DEMS required

Fluorinated Compounds Perfluorotetraglyme Under investigation

New class of materials being considered: molten, inorganic electrolytes

Electrolyte Experimental Evaluation 
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Electrolyte Stability Chemistry

H atoms replaced by F atoms for more stable electrolyte – design rule

Decomposition initiates by H atom removal

Computational 
Chemistry

Li-Air Electrolyte: 
DME
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Systematic Study of the Stability of New Electrolytes: 
Amides and Ureas

DEMS analysis of a Li-O2 cell with DMA.
Molar flux of O2 is closer to the theoretical rate 

showing  improved performance.

Acetamides and ureas are more stable in Li-O2 cells 
compared to previous SOA electrolyte DME

1,2-dimethoxyethane (DME)
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Acetamide and Urea Stability and their Degradation

Reversibility quantified using OER/ORR (oxygen evolution/oxygen reduction).
Acetamides has OER/ORR ∼25 % improvement to DME.

However, parasitic products are still form during cell operation.

Solvent LiNO3 [M] Cathode OER/ORR

1,2-dimethoxyethane (DME) 0.7

XC72 (PTFE-bound) 
on SS-mesh

0.78

N-Methylacetamide (NMA) 1 0.96

N,N-dimethylacetamide (DMA) 1 0.97

Tetramethylurea (TMU) 1 0.85

<-SOA
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Steric Hindrance Design Rule for DMA
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Challenges

Cathode

2Li+ O2

Li2O2

Ideal

Reality

Cathode

Li+ O2

Li2O2LiO2

Li2O2 is formed in a two step process, with the first step 
forming lithium superoxide, that can escape into the 
electrolyte

Superoxide 
dissolution

2LiO2 Li2O2 + O2

Li2C
O3

• One-step e- transfer generates Lithium Superoxide (LiO2) 
which is a strong nucleophile

• Dissolution of superoxide from cathode surface
• Advantage: Allows for deposition of Li2O2 without direct 

e- transport
• Disadvantage: Releases a highly reactive species into the 

electrolyte which must either recombine or react further
• Nucleophiles generated  result in decomposition of carbon 

cathode and electrolyte forming Li2CO3 among other 
products
• ~40% CO2 from Carbon Cathode 60% from Electrolyte1

• Li2CO3 formed creates a passivation layer making it difficult to 
remove Li2O2, hurting reversibility

• Li2CO3 is removed at higher potentials, but generates CO2

resulting in loss of active material (O2)

e-

2e-

e-

1 McCloskey,B.D., et al. J. Phys. Chem. Lett. 4, 17, 2989-2993

Cathode Development

https://pubs.acs.org/action/showCitFormats?doi=10.1021/jz401659f
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Research Goals

Cathode

Li+ O2

Li2O2Li2O

Task 1:
• Replace carbon cathode with oxidative 

resistive material

Task 2:
• Identify electrolytes with increased stability to 

nucleophilic attack/oxidation

Stable

Cathode

Li+ O2

Li2O2Li2O
Stable

Electrolyte + Nu 
 Li2CO3, 

Formate,
Acetate, …

Cathode Development
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Cathode Coatings

ZnO In2O3 CdO

Phase diagrams suggest stable cathode coatings
Transparent conducting oxides (TCO) are especially promising

Cathode
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Fabricated ZnO Coatings
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ZnO is stable but has lower electrical conductivity
Next step: doping ZnO to improve conductivity and maintain stability
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Charge
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Rods High Surface Area Layer

Fabricated Morphologies
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Novel Li-Air battery architectures for high power needed by aircraft
Oxygen must be delivered efficiently to cathode surface

Li-Air Battery Pack for Electric Aircraft

Alternating O2 and 
cathode layers

O2O2

Cathode
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Summary
• Big Question: Can we design and build a viable battery which satisfies the significant 

requirements of electric aircraft applications?

• Li-Air Batteries have high theoretical energies and can leverage onboard oxygen systems 

• Major Challenge of Li-Air: Electrolytes are limiting factor for practical energy densities, 
rechargeability and safety

• Feasiblity Objective: Design and fabricate new stable electrolytes for Li-Air batteries 
with energy densities of 400+ Wh/kg and 100 recharges and test them in an electric 
(UAV) flight

• Li-Air Dream Team: Unprecedented team of experts from NASA, DOE, academia, 
industry

• Technical Thrust Areas: Computation, New Materials, Mechanisms, Flight Application

• Progress:

• Electrolyte data mining; materials simulations; computational chemistry

• Electrolyte evaluation: inorganic electrolytes may be promising

• Cathode coatings: transparent conducting oxide coatings may be promising

• Li-Air cell/pack architectures will be required for high power

35
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