# **TFAWS Passive Thermal Paper Session**





Transient Heater Analysis for Orion Thermal Vacuum Testing

Jarred Wilhite, Erik Stalcup, NASA GRC

Presented By Jarred Wilhite



Thermal & Fluids Analysis Workshop TFAWS 2018 August 20-24, 2018 NASA Johnson Space Center Houston, TX



# **Agenda**



- Background
- Approach
- Model
- Results
- Conclusions





### **Background**



- Orion Multi-Purpose Crew Vehicle (MPCV)
  - Developed for future spaceflight missions (EM-1, EM-2)
- Thermal Vacuum Testing at Plum Brook Station (2019)
  - Space Environments Complex (SEC)
  - Space Simulation Vacuum Chamber
    - 122 ft. height, 100 ft. diameter
  - 60-day test



TFAWS 2018 - August 20-24, 2018



# **T-VAC Test Setup at SEC**







### **Approach**



- Used Thermal Desktop to model and simulate SEC during T-Vac testing
  - To determine temperatures that will be reached in various areas in SEC during testing
  - Chamber, cryoshroud, outer concrete enclosure, basement, GN<sub>2</sub>
    piping, etc. all included
- Results from initial analysis of SEC model
  - Showed the chamber floor to reach very low temperatures (below -20°F)



### **Problem**



- Hardware located near the chamber floor needs to be maintained above minimum operating temperature
  - Elastomeric seals, Capralon bearing pads (-20°F), O-rings, etc.
- Ways to prevent the chamber floor from reaching these temperatures
  - Add patch heaters to colder areas of chamber floor (pipe penetrations)
  - Add insulation to GN<sub>2</sub> pipes in the basement



### **Heaters**



- OMEGALUX silicone rubber fiberglass heaters
  - Lightweight, thin, insulated, flexible

- <u>Size</u>: 18" x 18"

- Power: 1600 W

Watt Density: 5 W/in²

 Heaters installed in bays located underneath chamber floor





## **Heater Location on SEC Chamber Floor**







### **Heater Zones & Controllers**



- 2 controllers were used to control operation of heaters
- Heaters turn on and off based on the temperatures of their sensing nodes (or controllers)
  - Turn on when sensing node temp < 40°F</li>
  - Turn off when sensing node temp ≈ 50°F
- Ran steady & transient Case
  - 30-hour case
  - Heaters set to 0% power during steady-state
  - Heaters set to proportional mode during transient



# **Heater Zone Diagram in TD**





#### • 24 Heaters

- 1600 W
- On temp = 40°F
- Off temp = 50°F





# **Heaters with Piping Configuration**









# **RESULTS**



### **Chamber Floor Animation**







# **Transient Response of Sensing Nodes**







### 1<sup>st</sup> Row of Heaters









### 1<sup>st</sup> Row of Heaters









Temperature (°F)

## 2<sup>nd</sup> Row of Heaters









### 3<sup>rd</sup> Row of Heaters









Temperature (°F)

# 4<sup>th</sup> Row of Heaters









### **Heater Power vs. Time**







# Results (at t=0 hrs.)









# Results (at t=30 hrs.)









### **Summary**



- Heaters had significant effect on chamber floor temp.
  - Able to observe effect by setting heaters to 0% power during steady state and proportional during transient
  - Min. temp. on chamber floor at end of run = 13°F
- Analysis shows that chamber floor temperatures will remain above -20°F when heaters are used
  - Min. operating temp. of hardware vital to T-VAC test
- Able to determine optimal configuration of heaters
  - Optimal location of heaters and controllers
  - Heater power kept within its limits (1620 W)
  - Heaters able to reach steady state within 30 hours





# **QUESTIONS**