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Introduction & Summam

« Given the diversity of asteroids, it is impossible to consider returning samples from
each one

* Dust particles are abundant around asteroids

* Primary minerals and organic materials can be measured by in situ dust detector
instruments

* These particles can be used to classify the parent body as an ordinary chondrite,
basaltic achondrite, or other class of meteorite

» Such instruments could provide direct links to known meteorite groups without
returning the samples to terrestrial laboratories
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Reflectance

The importance of asteroids

+ Building blocks of terrestrial, habitable worlds

* Incubator and delivery mechanism for organic molecules

* Tracers of dynamics, including planetary migration

* Meteorite parent bodies, providing direct evidence of early solar system history
* Interesting to other communities (planetary defense, ISRU, human exploration)
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Dust as microsamples
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Dust as microsamples

* Dust detectors use particle impact to
measure mass, velocity and directionality

* Dust analyzers add a mass
spectrometer to analyze the impact-
generated plasma cloud

* PUMA aboard VEGA 1 and 2 flew by
comet P/Halley in 1986; particles are a
mixture of silicates and organic material

Table 4. Chemical composition of Fe-rich parti-
cles. N, number of spectra.

PUMA-1
N PU;\;lv,)A 2
N with
Ni (%)
Metal (Fe/S > 10.0; 21 43 8
Fe/Si > 10.0)
Sulfides (Fe/S < 10.0; 35 26 10
S/Si > 5.0)
Silicates (Fe/Si < 10.0;, 15 40 4
Si/S > 5.0)
Other 5 34 11

Dust as microsamples

* Dust detectors use particle impact to
measure mass, velocity and directionality

* Dust analyzers add a mass
spectrometer to analyze the impact-
generated plasma cloud

* PUMA aboard VEGA 1 and 2 flew by
comet P/Halley in 1986; particles are a
mixture of silicates and organic material

+ Cassini CDA (m/Am ~ 30) identified salts

in Enceladus plume, (SiO,) particles
embedded in Saturn’s E ring, and IDPs
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Dust as microsamples

Dust detectors use particle impact to

measure mass, velocity and directionality

Dust analyzers add a mass
spectrometer to analyze the impact-

generated plasma cloud

PUMA aboard VEGA 1 and 2 flew by
comet P/Halley in 1986; particles are a
mixture of silicates and organic material

Cassini CDA (m/Am ~ 30) identified salts

in Enceladus plume, (SiO,) particles
embedded in Saturn’s E ring, and IDPs

Next generation (SUDA, IDEX) has larger

detectors and higher mass resolution
(m/Am > 200) - recognizable particle
compositions and mineralogies
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Linking microsamples to meteorites
T

« Combination of phase abundance (silicates, Fe-Ni metal, sulfides, phosphates,
oxides) and mineral composition (Fe/Mg) distinguishes major meteorite groups
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Linking microsamEIes to meteorites

« Combination of phase abundance (silicates, Fe-Ni metal, sulfides, phosphates,
oxides) and mineral composition (Fe/Mg) distinguishes major meteorite groups
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Linking mlcrosamEIes to meteorites
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Linking mlcrosamBIes to meteorites

* How many particles are
needed to link to a class?
* 100s to 1000s

» Hayabusa returned 1087
monomineralic particles,
was that enough to link to

an LL chondrite (in the I
absence of other
evidence)? 0
* Yes
* But not for Stardust (n=34) OL _

100%

80

60 -

Percentage of Trials

Itokawa
LL

Angrites

Aubrites

Eucrites

Ordinary C. (LL Type)
Ordinary C. (L Type)
Enstatite C.
Carbonaceous C.

800 1000

Percentage of Trials

400 600
Particle Sample Size

100% £ : L "

very weal

80 weak

60 substantial
strong

40 very strong

20 decisive

0 !

800 1000

Microsample densit

* Dust clouds are small
particles lost from the
asteroid primarily by
micrometeorite
impacts

* Structure of the dust
cloud is created by
asymmetry in the
micrometeorite sources
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Ejecta cloud structure (particles/m?) for 10-km body with grains a > 50 nm
Density is enhanced on the apex side, decreases with heliocentric distance
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Microsample density

* 100’s to 1000’s of
particles could
feasibly be
encountered during
flybys

* Highest impact
rates would be . , ,
encountered for 0 15 | llocentricmstance [au] - 80

- close flybys B

- smaller
heliocentric
distances

- larger bodies
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Summary

« Given the diversity of asteroids, it is impossible to consider returning samples from
each one

* Dust particles are abundant around asteroids

* Primary minerals and organic materials can be measured by in situ dust detector
instruments

* These particles can be used to classify the parent body as an ordinary chondrite,
basaltic achondrite, or other class of meteorite

» Such instruments could provide direct links to known meteorite groups without
returning the samples to terrestrial laboratories

* Missions are being developed that will take advantage of the opportunities
provided by measuring asteroid dust, particularly in combination with other
instruments




