

Learning Model Structural Uncertainty with Gaussian Processes

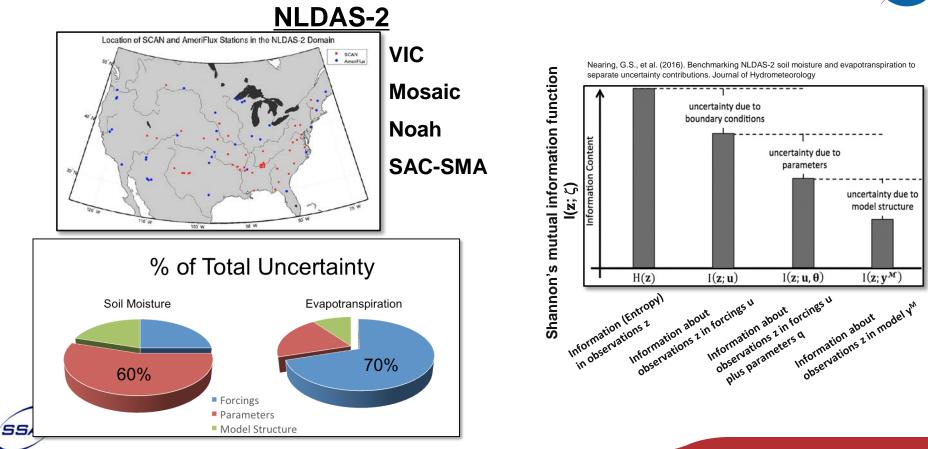
^{1,2}Jules Kouatchou, ^{1,2}Craig Pelissier, ³Grey Nearing, ¹Dan Duffy ¹Christa D Peters-Lidard and ¹Jim Geiger

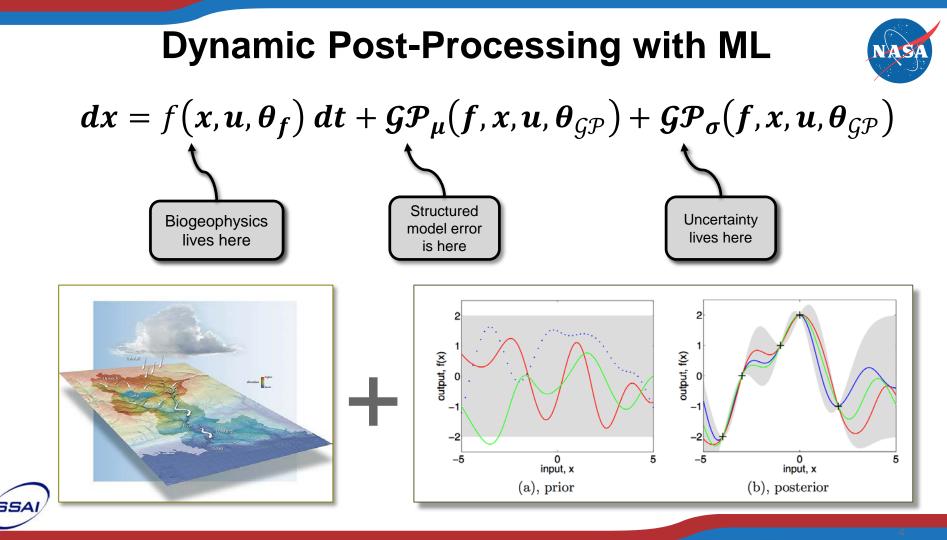
> ¹NASA Goddard Space Flight Center, Maryland, USA ²Science Systems and Applications Incorporated, Maryland, USA ³University of Alabama, Alabama, USA

LIS Model

Applications LIS - OPT/UE **Optimization and Uncertainty Estimation** (LM, SCE-UA, GA, RW-MCMC, DEMC) Water management LIS - DA Data Assimilation (EnKF, EnKS) Weather and 1 12 . St. 12 . St. 12 climate to toul States (Soil Moisture, LIS - LSM Snow, Skin Observations (Soil Temperature) Agricultural Moisture, Snow, Skin Land Surface Models (Noah, management Temperature, Terrestrial CLM, VIC, Catchment, JULES, Water Storage) Sacramento, CABLE), Lake models (FLake) Parameters (Topography, Soil Hazards properties, vegetation preparedness properties) Water and Energy Fluxes, Soil Moisture and Temperature profiles, Land surface states Military/Mobility Meteorological applications **Boundary Conditions** (Forcings) -----**Public Health**

Structural Uncertainty in the Models

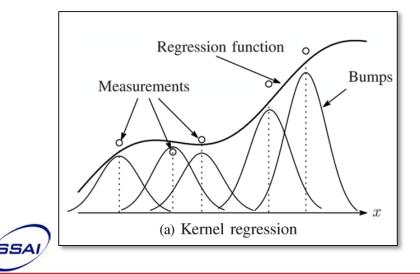




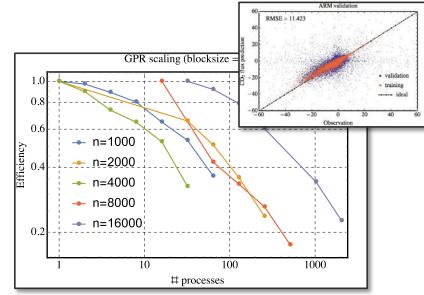
Gaussian Processes Regression

Gaussian Process Regression with ARD KernelEfficient MPI-enabled c++ GPR

$$\begin{split} \mathrm{K}(x,x',\theta) &= \sigma_f^2 \exp[-\frac{1}{2}(x-x')^T \Sigma^{-1} (x-x')] \\ \Sigma_{ij} &= \sigma_i^2 \delta_{ij} \\ p(y|f) &= \mathcal{N}(f,\sigma_y^2) \end{split}$$



- Uses ScaLapack.
- Can do 50k-100k samples.
- Kernels: ARD w/wo noise and NIGP.



Training a Corrective Model $dy = f(x, u, \theta_f) dt + \Delta$ If everything were perfect ...

Truth

soil moisture x

Creating a training set

Physical

model

- 1. Equilibrate Noah.
- 2. Start from observation "truth" at time *t*.

ML

correction

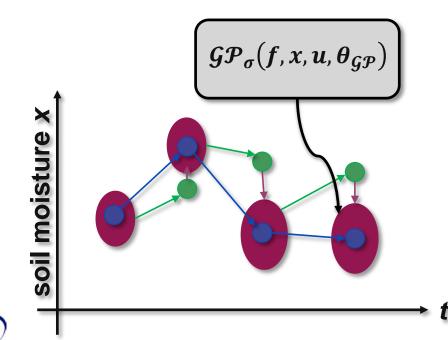
- 3. Make prediction $f(x, u, \theta_f)dt$ (Noah).
- Record training target = ⊿, and and training input input =

(fdt,x,u)

5. Repeat steps 2-4 for t+1

Noisy Training Sets

Uncertainty in correction needs to be accounted for ...

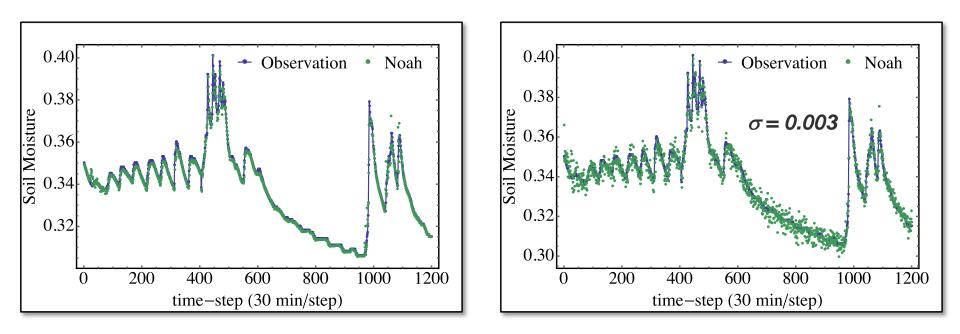


Modify procedure

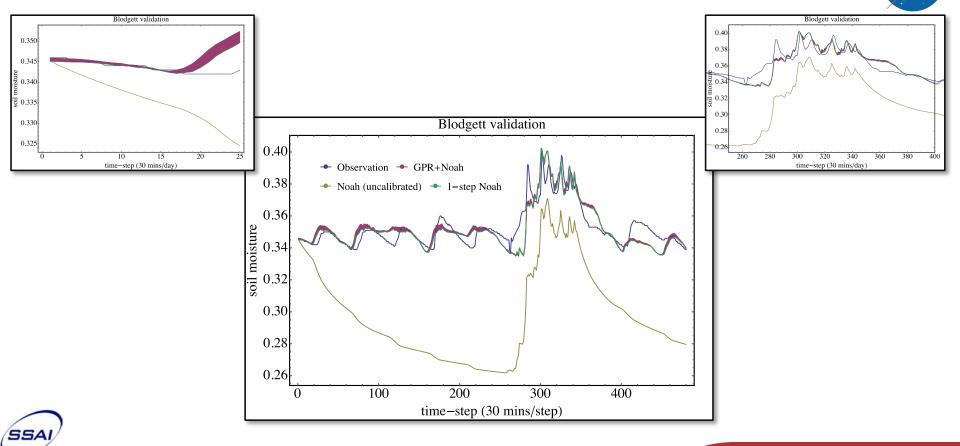
Creating a training set

- 1. Equilibrate Noah.
- 2. Start from observation "truth" at time *t*.
- 3. Add $N(0,\sigma)$ noise to lagged value to propagate uncertainty to the prediction $f(x,u,\theta_f)dt$ (Noah).
- 4. Make prediction $f(x, u, \theta_f)dt$ (Noah).
- 5. Record training target = Δ , and
 - and training input = (icit,x,u)
- 6. Repeat steps 2-5 for *t+1*

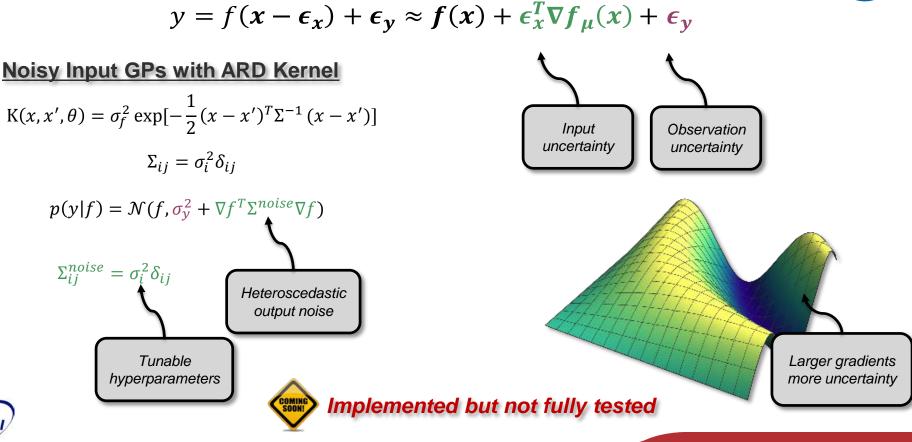
Blodgett Training Sets



Blodgett AmeriFlux Tower



Noisy Input GPs



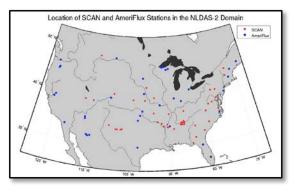
55A

Outlook

Coming soon

SSA

Validate spatially and temporally over 1 year at the flux towers sites.

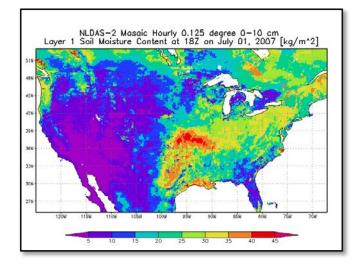


- 1. Incorporate NIGPs to reduce uncertainty.
- 2. Validate at each tower individually for 1 year with at least 10 day forecasting (temporal).
- 3. Perform LOO validation over the towers (spatia).

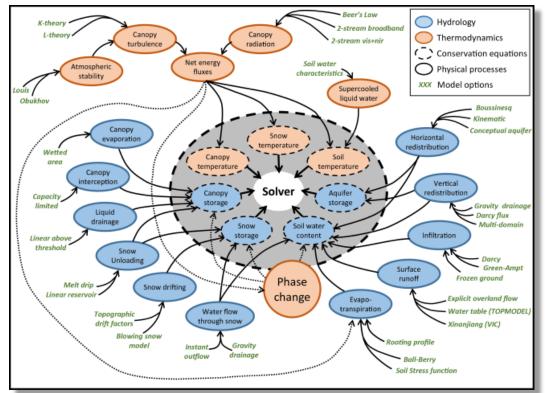
NASA

In the near future

Create NLDAS maps with hourly 0.125 degree resolutio



An Emerging Vision



We need radically novel strategies for merging complex process models with the powerful ability of machine learning to extract information from data.

M. Clark et al. (2015) "A unified approach for process-based hydrologic modeling: 1. Modeling concept" Water Resources Research

SSA

Thanks!

