Merging CYGNSS with Other Datasets to Construct Hurricane Integrated Kinetic Energy

Patrick Duran

University of Alabama in Huntsville

Acknowledgement: Dan Cecil

CYGNSS Science Team Meeting 15 January 2019 Pasadena, CA

Integrated Kinetic Energy (IKE)

• A tropical cyclone (TC) intensity metric first proposed by Powell and Reinhold (2007):

$$IKE = \int_{V} \frac{1}{2} \rho U^2 dV$$

- Accounts for both maximum wind speed and the spatial extent of the surface wind field.
- Can be a better measure of destructive potential than maximum wind speed particularly for large TCs.

V_{max}=110 kt

-89

-88

² Camille was stronger in terms of V_{max.}

Katrina's larger wind field ³¹ made it much more destructive. ³⁴

IKE (Powell & Reinhold) Camille: 63 Terajoules Katrina: 122 Terajoules

H*Wind analyses from NOAA/AOML Hurricane Research Division

Hurricane Katrina (2005)

IKE Computation

• Assume integration over a 1-m depth:

$$IKE = \frac{\rho_0}{2} \int_0^{2\pi} \int_0^R u(\theta, r)^2 r dr d\theta$$

- Requires knowledge of the velocity at every (θ,r).
 - Multiple methods possible:
 - Use a data assimilation scheme (e.g. H*WIND) or model analysis.
 - Fit observations to a parametric wind profile (e.g. Morris and Ruf).
 - Piecewise polynomial interpolation (e.g. tension splines).
 - Azimuthally average observations to get a radial profile of velocity.

IKE Computation

• Assume integration over a 1-m depth:

$$IKE = \frac{\rho_0}{2} \int_0^{2\pi} \int_0^R u(\theta, r)^2 r dr d\theta$$

- Requires knowledge of the velocity at every (θ, r) .
 - Multiple methods possible:
 - Use a data assimilation scheme (e.g. H*WIND) or model analysis.
 - Fit observations to a parametric wind profile (e.g. Morris and Ruf).
 - Piecewise polynomial interpolation (e.g. tension splines).
 - Azimuthally average observations to get a radial profile of velocity.

1. Start with an estimate of the radial wind structure using operational wind radii from the *Extended Best Track Dataset*.

1. Start with an estimate of the radial wind structure using operational wind radii from the *Extended Best Track Dataset*.

- 2. Gather all observations collected within 3 hours and 500 km of the best-track storm center from *CYGNSS*, *SFMR*, and *ASCAT*.
 - CYGNSS v2.1: NBRCS wind retrievals using only the YSLF GMF. All winds with "uncertainty" > 3.5 m s⁻¹ filtered out.

Removing all observations with "uncertainty" (standard deviation of error) > 3.5 m s⁻¹ eliminates unrealistically large wind speeds without removing too many good observations.

- 2. Gather all observations collected within 3 hours and 500 km of the best-track storm center from *CYGNSS*, *SFMR*, and *ASCAT*.
 - **SFMR:** All wind retrievals that did not have any QC flag flipped.
 - **ASCAT:** All wind retrievals that did not have the product monitoring, KNMI, or variational QC flags flipped.

3. Transform observation locations into a storm-centered polar coordinate system, and split up by quadrant.

4. Azimuthally average the wind observations in each quadrant independently, using 5-km-wide radial bins.

Computing IKE

5. Integrate kinetic energy in each quadrant, using only azimuthally averaged winds greater than 34 kt, and sum them to get total IKE.

Computing IKE

5. Integrate kinetic energy in each quadrant, using only azimuthally averaged winds greater than 34 kt, and sum them to get total IKE.

 Compute IKE every hour, using 6 hours of observations (all observations within 3 hours before or after best track time).

Total IKE (sum of 4 quadrants) - IRMA

- Observations typically produce smaller IKE estimate than best track wind radii.
 - A good thing.
 - Best track wind radii are the maximum extent of the winds in a given quadrant.

Total IKE (sum of 4 quadrants) - IRMA

- Observations typically produce smaller IKE estimate than best track wind radii.
 - A good thing.
 - Best track wind radii are the *maximum extent* of the winds in a given quadrant.
 - Sharp drops in IKE can occur when observations become available.
 - Sometimes good; sometimes not.
- Large temporal fluctuations are related to availability of observations, and are typically unphysical.

Where CYGNSS Adds Value

• When aircraft reconnaissance is unavailable (e.g. far from land).

Where CYGNSS Could be Improved

Where CYGNSS Could be Improved

Other Causes of Large IKE Fluctuations

Total IKE (sum of 4 quadrants) - IRMA

• Presence of land in the averaging radii precludes observations from all platforms currently in the dataset. IRMA | 09/10/2017 23:00 UTC | V_{max} 51.4 m s⁻¹ (100 kt) | RMW 28 km

Future Directions

- Include land-based surface observations.
- Add SMAP to the observation set.
- Consider weighting the CYGNSS observations based on the ratio of the uncertainty of the wind speed retrieval to the retrieved wind speed.
- Consider other ways to interpolate between observations.
 - Piecewise polynomial interpolation?
- Assign a IKE estimate quality rating based on number and quality of available observations.

Extra Slides

Extra Details on Best Track Radial Wind Profile

- Use RMW and V_{max} from best track.
 - Assume that RMW is valid in quadrant with largest r_{34} , and scale the RMW by r_{34} in all of the other quadrants (i.e., a quadrant with a smaller r_{34} has a smaller RMW.
 - V_{max} is the same in each quadrant, *unless* there is no corresponding wind radius (e.g., if V_{max} = 60 kt, but there is no 50-kt wind radius defined in a quadrant, it does not make sense for v_{max} to be 60 kt in that quadrant).
 - In this case, define V_{max} in that quadrant to be 5 kt less than the lowest missing wind radius in that quadrant.
 - In the above example, V_{max} would be 45 kt.