

#### Evaluation of System Reliability and Heavy Ion Angular Effects

Melanie Berg<sup>1</sup>, Michael Campola<sup>2</sup> Melanie.D.Berg@NASA.gov 1.SSAI in support of NASA/GSFC

2. NASA/GSFC



#### Acronyms

- Device under test (DUT)
- Energy (E)
- Error rate (λ)
- Error rate per bit( $\lambda_{bit}$ )
- Error rate per system(λ<sub>system</sub>)
- Field programmable gate array (FPGA)
- Linear energy transfer (LET)
- Linear energy transfer effective (LET<sub>eff</sub>)
- Linear energy transfer on set (L<sub>0</sub>)
- Linear energy transfer saturation (LET<sub>sat</sub>)
- Linear energy transfer threshold (LET<sub>TH</sub>)
- Mean time to failure (MTTF)

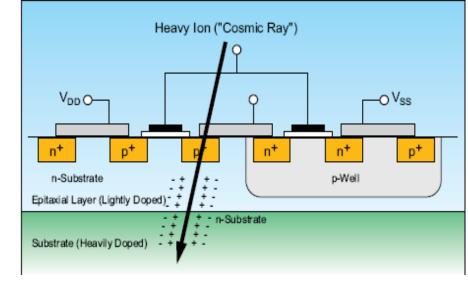
- Phase locked loop (PLL)
- Rectangular parallel pipe (RPP)
- Single event upset (SEU)
- Single event upset cross-section ( $\sigma_{\text{SEU}}$ )
- Single event upset cross-section saturation (σ<sub>SAT</sub>)
- Triple modular redundancy (TMR)



#### **Problem Statement**

- Field programmable gate array (FPGA) devices have become complex mixed signal integrated circuits.
- They are no longer as immune or resilient as their predecessors.
- Traditionally, there was a lot of margin regarding FPGA analysis... either very "soft" or very "hard."
- We extrapolate single event upset (SEU) data to predict FPGA susceptibility to ionizing particles... predict mission failure.
- To properly extrapolate SEU data to complex target circuits... we need smart data!
- FPGA SEU testing can no longer rely on:
  - Simple test structures
  - Narrow scopes (e.g., merely configuration read-back)
  - Limited visibility
- FPGA data analysis can no longer simply rely on:
  - Extrapolated shift-registers
  - Used configuration-bits

#### We need to test-as-we-fly and analyze-as-we-design.


#### Abstract



- Microsemi (Microchip) RTG4 embedded triple modular redundant (TMR) phase-locked-loop (PLL) SEU data is presented.
- SEU data analysis includes:
  - Evaluation of heavy-ion beam angular effects (rectangular parallel pipe (RPP) or no RPP)
  - Importance of finding linear energy transfer (LET) onset (L<sub>0</sub>)
  - Comparison of prediction rate techniques

# Device Penetration of Heavy lons and Linear Energy Transfer (LET)

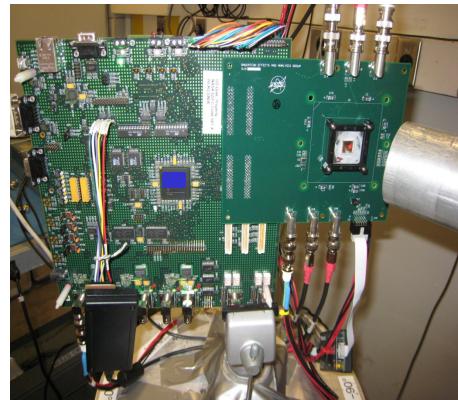
- LET characterizes the deposition of charged particles.
- Based on Average energy loss per unit path length (stopping power).
- Mass is used to normalize LET to the target material.



# Average energy deposited per unit path length

$$LET = \frac{1}{\rho} \frac{dE}{dx} , MeV \frac{cm^2}{mg}$$
  
Density of target material

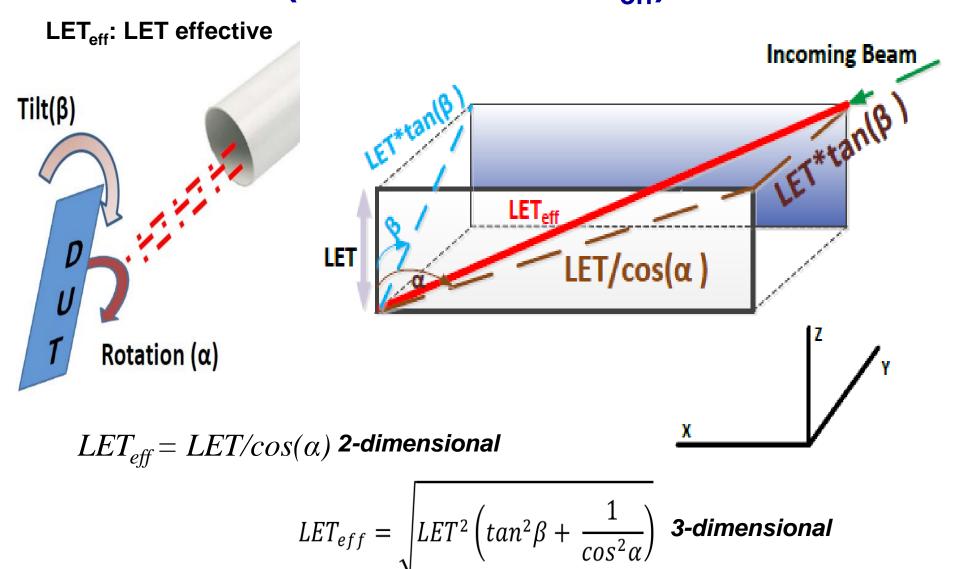
### Characterizing SEUs: Radiation Testing and SEU Cross Sections




# SEU Cross Sections $(\sigma_{seu})$ characterize how many upsets will occur based on ionizing particle exposure.

$$\sigma_{seu} = \frac{\#errors}{fluence}$$

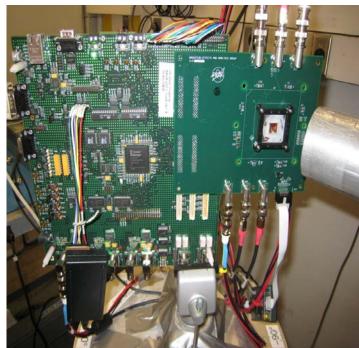
#### **Terminology:**


- Flux: Particles/(sec·cm<sup>2</sup>).
- Fluence: Particles/cm<sup>2</sup>.
- $\sigma_{seu}$  is calculated at several LET values (particle spectrum).





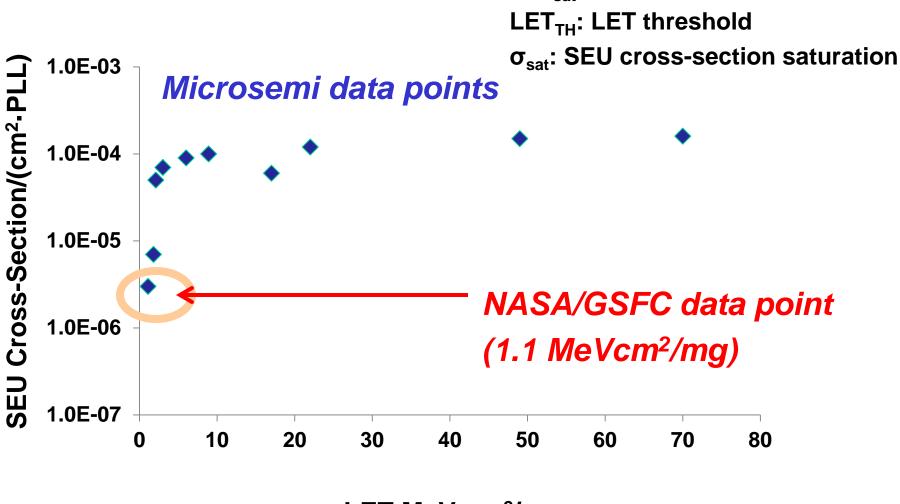
- Microsemi has added the following user design options:
  - Singular PLL
  - TMR PLL
- PLLs are created with analog circuitry and subsequently have a different susceptibility than other user fabric.
- Warning PLL SEU data cannot be extrapolated to other user fabric data.


#### RPP: Angular Effects (LET versus LET<sub>eff</sub>)





### **RPP and SEU Data**


- As the angle of incoming beam particles deviates from normal, LET<sub>eff</sub> increases.
- It is assumed that SEU cross-sections will increase accordingly.
- However, in complex systems, changing angle either:
  - Decreases SEU cross-sections
  - Has no change in SEU cross-sections
- Angle analysis should be performed.
- SEU data obtained at angle should not be mixed with data obtained at normal. Use separate graphs.



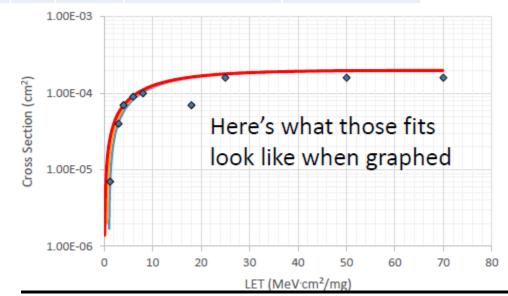


#### **TMR PLL SEU Data**

LET<sub>sat</sub>: LET saturation

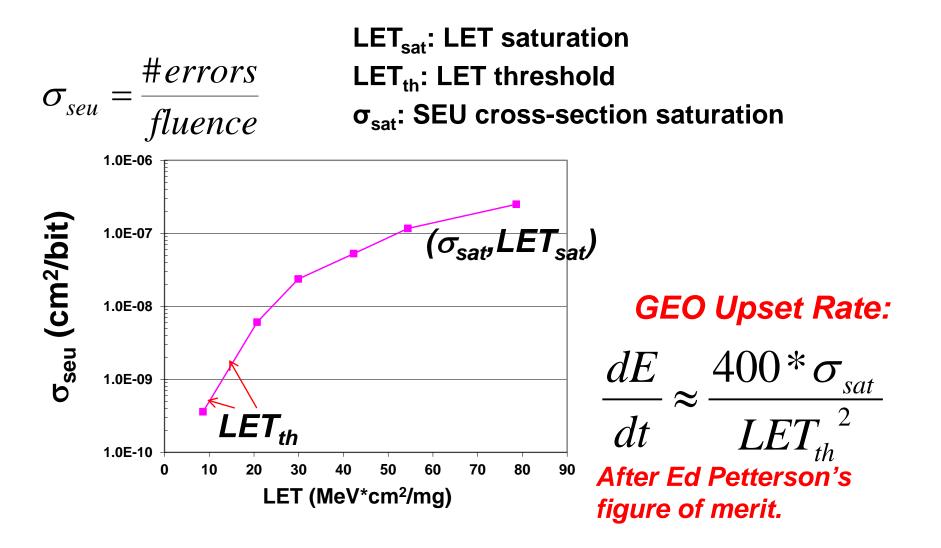


LET0 not found yet


LET MeV-cm<sup>2</sup>/mg

#### **RTG4 TMR PLL SEU Data Analysis:** 4 Parameter Weibull Fit and CREME96

| L0<br>(MeV.cm2/mg) | W<br>(MeV.cm2/mg) | S  | A0<br>(cm2) | Rate<br>(upsets/PLL/day<br>) | Days between<br>PLL upsets |
|--------------------|-------------------|----|-------------|------------------------------|----------------------------|
| 1.1                | 10                | .9 | 2e-4        | 4.8e-3                       | 208                        |
| 1                  | 10                | .9 | 2e-4        | 5.2e-3                       | 192                        |
| .9                 | 10                | .9 | 2e-4        | 5.6e-3                       | 179                        |
| .8                 | 10                | .9 | 2e-4        | 6e-3                         | 167                        |
| .5                 | 10                | .9 | 2e-4        | 8e-3                         | 125                        |
| .1                 | 10                | .9 | 2e-4        | 1.6e-2                       | 62.5                       |


Significant variance in rates depending on L<sub>0</sub>.

Can saturated point values be trusted if obtained by angle?





#### **Petterson's Rule of Thumb**



# Comparison of Error Prediction Methods



| L <sub>0</sub><br>MeVcm²/mg | W<br>MeVcm²/mg | S  | A0<br>cm <sup>2</sup> | Rate<br>upsets/PLL/day | Days<br>between<br>PLL<br>upsets<br>(MTTF) | Petterson<br>MTTF<br>LET <sub>th</sub> = 4L <sub>0</sub> |
|-----------------------------|----------------|----|-----------------------|------------------------|--------------------------------------------|----------------------------------------------------------|
| 1.1                         | 10             | .9 | 2e-4                  | 4.8e-3                 | 208                                        | 242                                                      |
| 1                           | 10             | .9 | 2e-4                  | 5.2e-3                 | 192                                        | 200                                                      |
| .9                          | 10             | .9 | 2e-4                  | 5.6e-3                 | 179                                        | 162                                                      |
| .8                          | 10             | .9 | 2e-4                  | 6.0e-3                 | 167                                        | 128                                                      |
| .5                          | 10             | .9 | 2e-4                  | 8.0e-3                 | 125                                        | 50                                                       |
| .1                          | 10             | .9 | 2e-4                  | 1.6e-3                 | 62.5                                       | 2                                                        |



# Impact of TMR PLL MTTF

- PLL control clocks (heart beat of a synchronous design).
- PLL glitch or unlock brings down the circuit.
- Generally systems have several PLLs. A system with 5 PLLs with a MTTF = 200 day/PLL-upset will have a system MTTF = 40 days/PLL-upset.
- This can be problematic for critical applications.



#### **Acknowledgements**

- This work has been sponsored by the NASA Electronic Parts and Packaging (NEPP) Program.
- Thanks is given to the NASA Goddard Radiation Effects and Analysis Group (REAG) for their technical assistance and support.

#### **Contact Information:**

#### Melanie Berg: NASA Goddard REAG FPGA Principal Investigator: Melanie.D.Berg@NASA.GOV