

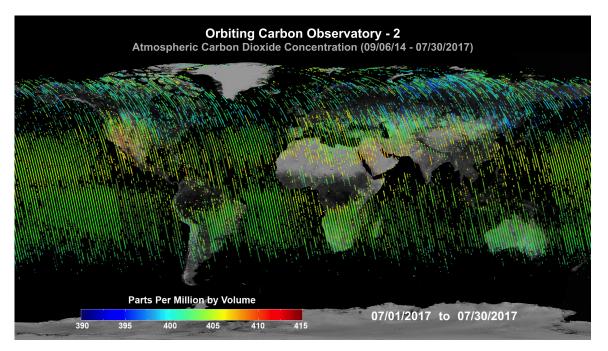
Quantifying contributions of land carbon fluxes variability and atmospheric transport variability to atmospheric CO₂ variability

Eunjee Lee^{1,2}

Randal D. Koster², Lesley Ott², Fan-Wei Zeng^{2,3}, Sarith Mahanama^{2,3}, Tomohiro Oda^{1,2}, Benjamin Poulter⁴, Brad Weir^{1,2}

¹ Goddard Earth Sciences Technology and Research, Universities Space Research Association
² Global Modeling and Assimilation Office, NASA Goddard Space Flight Center
³ Science Systems and Applications, Inc.

⁴ Biospheric Sciences Laboratory, NASA Goddard Space Flight Center



Motivation

Interaction between the land carbon cycle and climate

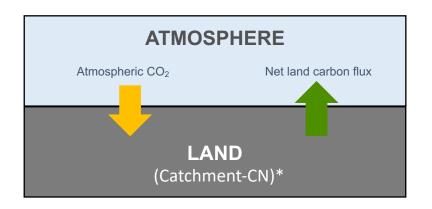
What determines the variability of CO_2 in the atmosphere?

https://ocov2.jpl.nasa.gov/galleries/gallerydataproducts/

Overview

- Response of atmospheric CO₂ to land carbon flux anomaly: Case of a Spring drought
- 2. In what regions and seasons does the land carbon flux variability dominate the variability of atmospheric CO_2 ? How high into the atmosphere is the land carbon flux variability felt?

Part I

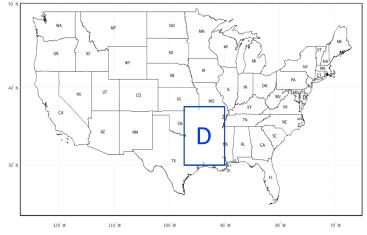

Response of atmospheric CO₂ to land carbon flux anomaly: Case of a Spring drought

[Question] To what extent do land carbon flux changes induced by a regional Spring drought affect atmospheric CO₂?

Connecting the land and atmospheric branches of the Carbon cycle Simulating Land-Atmosphere feedback

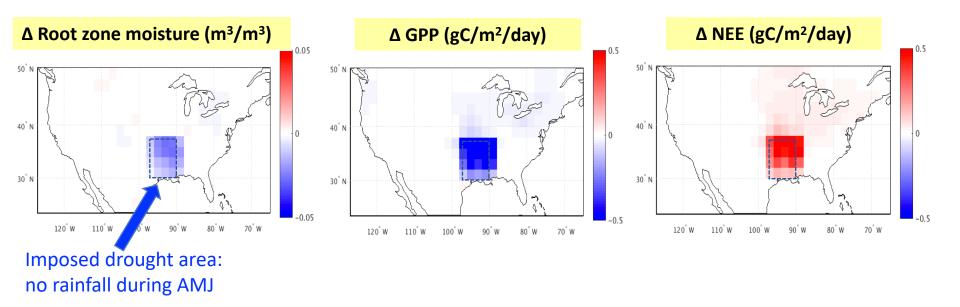
A coupled land-atmosphere model in the NASA GEOS system:

- (i) allows modeled atmospheric CO₂ to affect land surface carbon uptake, and
- (ii) uses modeled net CO_2 uptake at the land surface as a source or sink for the atmospheric CO_2 ,


(iii) enables carbon cycle feedbacks alongside water & energy cycle feedbacks

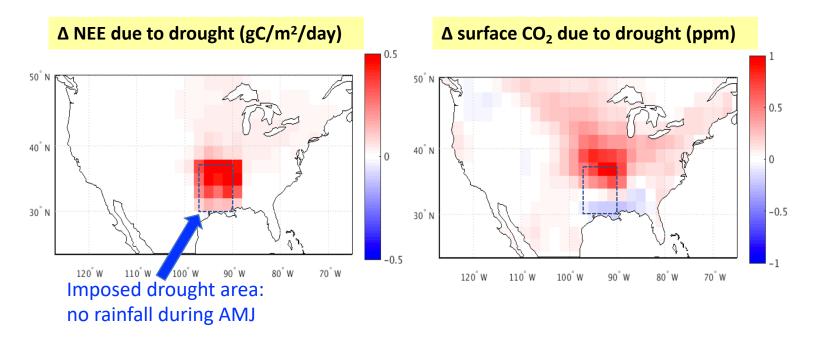
Experimental design

- Six-month free running AGCM simulations
- Control ensemble vs. Drought ensemble
 - **Control** ensemble is with no imposed drought
 - Drought ensemble is with an artificially imposed meteorological drought over 7° x 7° domain in US (boxed area) from April to June, followed by a 3-month recovery period
- Each suite consists of 80-member ensembles
 - 2012 SST was applied for all members
 - Slightly different initial conditions were applied with atmospheric perturbations (temperature and humidity)



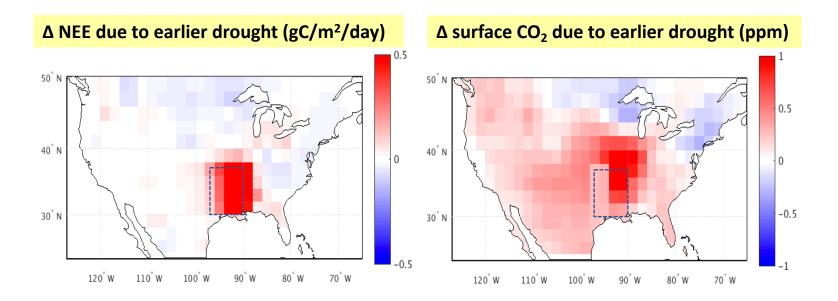
Goal: Mechanistic understanding of drought impacts on CO₂ in a <u>coupled</u> system

Response of land carbon fluxes to drought (Drought minus Control during AMJ drought period)


Imposed drought leads to lower soil water and leaf area index (LAI)

⇒ Reduced GPP and reduced net carbon uptake by land

Land flux and atmospheric CO₂ anomalies (Drought minus Control during AMJ drought period)



The impact of the drought is seen both inside and outside the imposed drought region \Rightarrow atmospheric transport moves the extra CO₂ around

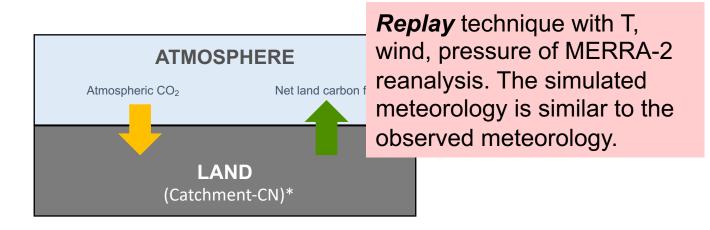
NASA

Land flux and atmospheric CO₂ anomalies (Drought minus Control during JAS recovery period)

Even after the drought ends, impacts on NEE and atmospheric CO_2 persist and (for CO_2) are far-reaching

Part II

The impact of land carbon flux variability on atmospheric CO₂ variability

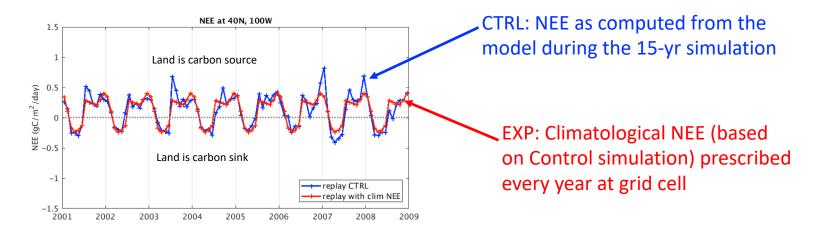

[Questions]

In what regions and seasons does the land carbon flux variability dominate the variability of atmospheric CO₂? How high into the atmosphere is the land carbon flux variability felt?

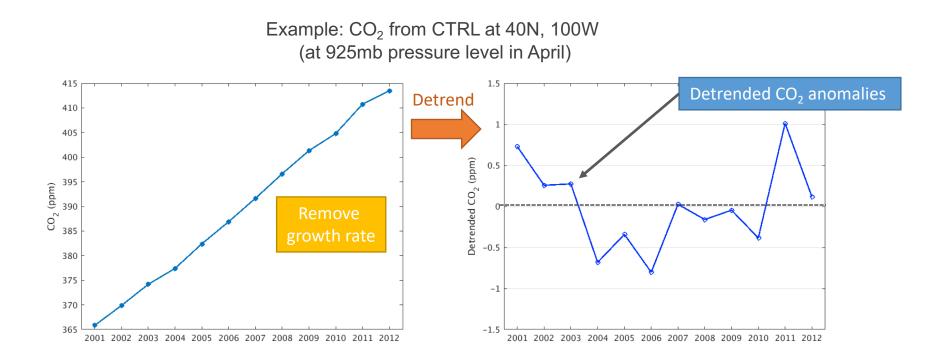
Connecting the land and atmospheric branches of the Carbon cycle Simulating Land-Atmosphere feedback

A coupled land-atmosphere model in the NASA GEOS system:

- (i) allows modeled atmospheric CO₂ to affect land surface carbon uptake, and
- (ii) uses modeled net CO_2 uptake at the land surface as a source or sink for the atmospheric CO_2 ,

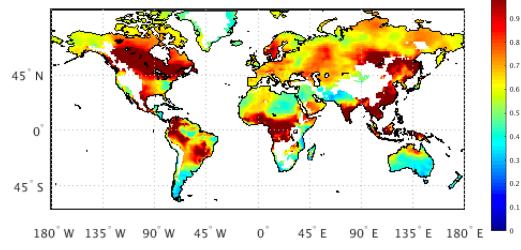

(iii) enables carbon cycle feedbacks alongside water & energy cycle feedbacks

Experimental design


	CTRL	EXP
Atm, Ocn, Land	Replay of temperature, pressure and wind from MERRA-2; Ocean SST is prescribed	
Land carbon flux to Atmosphere	Simulated NEE fluxes from Catchment-CN	15-year <u>climatological NEE</u> ; 3-hourly mean is applied

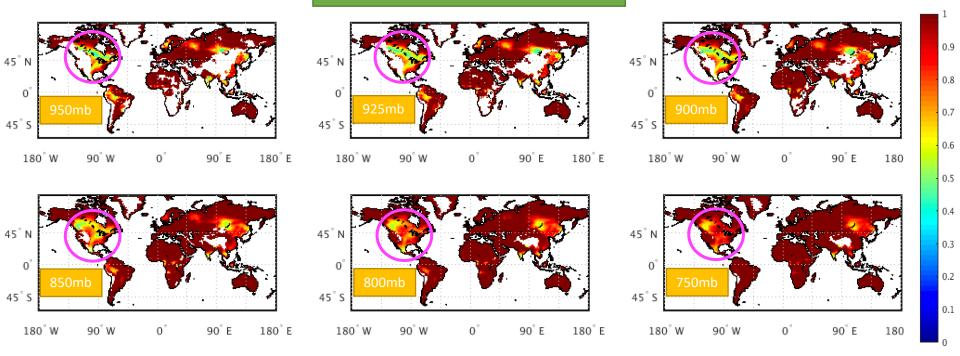
Analysis metric: standard deviation of detrended CO₂

[STEP 1] Detrend CO₂ time series


Analysis metric: standard deviation of detrended CO₂

[STEP 1] Detrend CO₂ time series

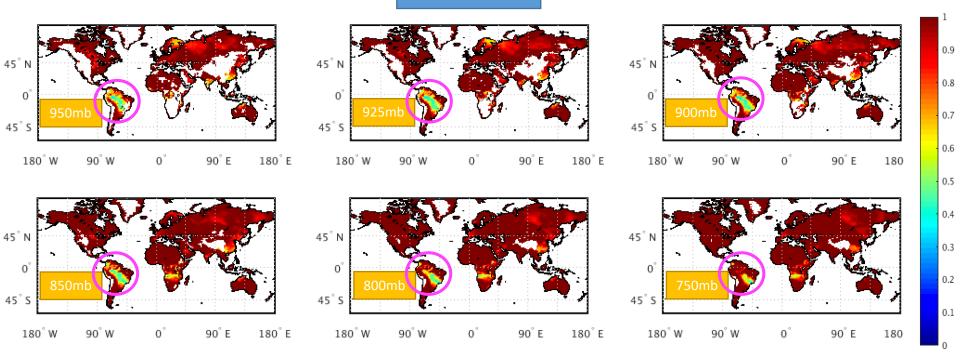
[STEP 2]


Compute the standard deviation of detrended CO₂ anomalies (Repeat for each grid cell, pressure level, and month in both CTRL and EXP)

Example: Standard deviation of detrended CO₂ anomalies at 900mb (CTRL) for April

Ratio of standard deviation of detrended CO₂ anomalies (EXP/CTRL)

APRIL (NH growing season)



The results indicate that both land flux variability and transport variability affect CO_2 variability, with the former becoming less important higher in the atmosphere.

Ratio of standard deviation of detrended CO₂ anomalies (EXP/CTRL)

DECEMBER

The contributions of land flux variability to total CO_2 variability vary regionally and seasonally (e.g., North America in April; Amazon in December).

[Drought impact on land and atmospheric carbons]

- 1. An imposed drought affects local NEE and both local and remote CO₂. The effects persist after the drought ends.
- 2. The free running drought ensemble study illustrates the importance of atmosphere transport in defining the spatiotemporal variability in the atmospheric CO_{2} .

[Contribution of the land carbon variability to CO₂ variability]

- 1. An experiment has been devised to isolate the role of land carbon flux variability in determining atmospheric CO₂ variability.
- 2. The result shows that interannual variations in land carbon flux influence regional CO₂ variability in the lower and middle troposphere (up to 750mb) during the growing seasons (e.g., North America in April; Amazon in December)
- 3. Additionally, CO₂ variability is controlled in large part by atmospheric transport variability.

National Aeronautics and Space Administration

EXTRA Slides

