

1

A Composite Damage Tolerance Simulation Technique to Augment the Building Block Approach

Mack McElroy^{1*}, Mohammad Zanganeh², Matthew Galeano¹, Jeremy Jacobs¹

¹NASA Johnson Space Center, Houston, TX 77058 USA ²Jacobs Technology at NASA Johnson Space Center, Houston, TX 77058 USA *mark.w.mcelroy@nasa.gov

> AIAA SciTech Forum (San Diego, CA) January 7-11, 2019

MOTIVATION

MOTIVATION

Design and certification process for composite aerospace structures

- Heavily reliant on tests
- > Expensive
- Damage simulation tools may reduce the need for some testing
 - manufacturing flaw
 - compression after impact
 - worst case credible damage

IMPACT DAMAGE

Example 1: X ray CT scan of impact damage in a CFRP plate

Example 3: X ray CT scan of impact damage in a CFRP plate

Example 2: Ultrasonic scan of multiple impact sites on stiffened panel

COMPOSITES IN ORION

- NASA crew module
- Deep space human exploration
- First test flight: 2014
- First crewed flight: 2023

Composite considered in this study

- Solid laminate
- IM7/977-3 Woven Carbon Fiber Reinforced Polymer
- Layup
 - [+45°/0°/-45°/90°]_{2s}
 - Adhesive at mid-plane

COMPRESSION AFTER IMPACT

Compression after impact test are at "coupon scale"

Impact energy = 15 ft-lbs

X-ray CT scan at impact site

ASTM Impact Test Fixture

COMPRESSION AFTER IMPACT

Test specimen (failed)

INSERT TEST COUPON PIC

FINITE ELEMENT MODEL

- Abaqus 2017
- Continuum shell elements
- Preexisting impact damage defined as discrete delaminations in mesh
- Virtual Crack Closure Technique (VCCT) to predict delamination onset
- First ply failure (FPF) to predict lamina failure onset
- Critical force assumed to correspond with damage initiation (VCCT or FPF)

How should preexisting impact damage be represented?

MODEL DEVELOPMENT

- Is Flash IR NDE fidelity sufficient for CAI model definition?
- Goal: Determine model configuration that...
 - Predicts critical force accurately
 - ✓ Is insensitive to slight variations in model definition
 - Can be defined and solved in a "timely manner"

Projected damage area only in Flash IR

Parametric study

- Depth of damage
- Spread of two cracks
- Eccentricity of cracks
- Number of cracks

LINEAR ELASTIC RESPONSE

CONTACT ALGORITHM

- 1. Global response is highly sensitive to contact algorithm
- 2. Global response constrained if VCCT activated
- 3. Case 1 and 4 to be used henceforth

				Constraint reinforcement
<u>Case</u>	VCCT Status	Contact Property option	Pressure Overclosure	<u>method</u>
1	On	VCCT Fracture Criterion	N/A	N/A
2	Off	Normal Behavior	"Hard Contact"	Penalty
3	Off	Normal Behavior	"Hard Contact"	Direct
4	Off	Normal Behavior	"Hard Contact"	Default

STARTING DEPTH OF DAMAGE

0.035 0.07 0.105 0.14 0.175 0.21 0.245 0.28 Depth of damage [in]

SPREAD OF TWO DELAMINATIONS

ECCENTRICITY OF TWO DELAMINATIONS

- Prediction accuracy is a function of proximity to the laminate surface
- 2. Good correlation is seen when the delaminations are defined near the laminate surface
- 3. VCCT predictions are more sensitive that first ply failure
- 4. VCCT often causes non-convergence

NUMBER OF DELAMINATIONS

- 1. Predictions are not sensitive to the number of cracks
- 2. If VCCT is activated, predictions change significantly
- 3. VCCT under-predicts strength
- 4. VCCT causes convergence problems

0 cracks	1 crack	2 cracks	3 cracks	4 cracks

How should preexisting impact damage be represented?

- Two preexisting delaminations
- Spaced less than or equal to 0.11375" apart
- Located near the impacted surface of the coupon (3 plies)
- Sizes of the two preexisting delaminations correspond to projected damage area from Flash IR NDE of each side of the coupon

GRAPHICAL USER INTERFACE

- Abaqus plug-in
- CAI simulation of solid laminate
- User enters model definition parameters
- Automatic model definition and execution

💠 Damag	ged Composite Laminate V1.1 by	Mohammad Zangane	th 🚺		and Zasanah	×			
Dimensions Materials	5 Plies Damage Definition Controls	The Dam	laged compos	ite Laminate V1.1 by Moha	mmad zanganen				
Material Name: IM7-97	77-3	Dimensions Mate	rials Plies Dar	nage Definition Controls	😴 Damage	d Composite La	minate V1.1 by Mo	ohammad Zanganeh	
Material Properties	Fracture Properties	Total Number of Plie	Total Number of Plies: 32		Dimensions Materials Plies Damage Definition Controls			ammad Zanganeh 🛛 🔛	
E1 10190	G1C 1000	□ Symmetric		Method: Conical R Dimensions Materials Plies Damage Definition Controls					
E2 10770	G2C 250	Orientation	Thickness	Mesh Size (Global Approxim	the design of the			Title	
E3 1290	G3C 250	1 45	0.00875		Conical Method Paramete	ers	and the second second	Job Controls	General Controls
Nu12 0.044	Etha 1.5	2 0	0.00875		X Y R Min	R Max Ifrt	Damaged Interface	0.00	MESH
41.15 0.051		3 -45	0.00875		2 3 0.4551	0.6619 0.05	12,20	Joh Namer GUTert	
Nu13 0.061		4 90	0.00875		Manual Method Paramet	ers		Sob Name: Guilest	G BC.
Nu23 0.081		3 43	0.00075		Damaged Interface	Damage Radius	X		Giver
G12 400		7 .45	0.00875		1			U SJBMIT	G voor
613 433		8 90	0.00875		2			PREPRO	MINCONTACT
(012) 402		9 90	0.00875		3			□ POSTPRÓ	MINCW
023 433		10 -45	0.00875		4			GPOST	initialinc 0.01
		11 0	0.00875		3			Tale	
		12 45	0.00875		0			Dev Control	
		13 90	0.00875					Shape Controls	
		14 -45	0.00875		9				
		15 0	0.00875		10			☑ CIRCULAR	
		16 45	0.00875		11			SMALLBOX	
		17 45	0.00875		12			CROSS	
		18 0	0.00875		13			LOFT	
		19 -40	0.00875		14			LAMINATE	
		20 50	0.00075		15			RP_DISP	
		22 0	0.00875		16			MINPLIES	
		23 -45	0.00875		17				
		24 90	0.00875		18			7	
		25 90	0.00875		19		-		
		26 -45	0.00875		20				
		27 0	0.00875		21				
		28 45	0.00875		22		-		
		29 90	0.00975		24				
		30 -45	0.00875		25				
					26				
					27				
					28				
	OK				29				
		-	OK		30				
					0	ĸ			
					Laurente Constanting			OK	Cancel

CLOSING REMARKS

- Current status
 - Completed sensitivity study on model definition parameters
 - Validated model prediction accuracy
 - One impact energy
 - One layup
 - One material system
- Future work
 - Attempt model test correlation of additional impact energies
 - Attempt test correlation of additional layups
 - Generate recommendation for use in <u>future BBA</u>
- Application: if used to replace otherwise planned CAI test...
 - Same material system
 - Similar layup
 - Similar environment
 - No expected differences in failure mode

QUESTIONS

Mack McElroy NASA Johnson Space Center mark.w.mcelroy@nasa.gov