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Human Planetary Exploration
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What's changed since Apollo?
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Human-Robot Teams

Many forms of human-robot teaming
* “Robot as tool” is only one model

 Humans and robots do not need to
be just co-located or closely coupled

» Distributed teaming is also important

Concurrent, interdependent operations

* Human-robot interaction is still slow and
mismatched (compared to human teams)

« Easy for robots to slow down the human

» Loosely-coupled teaming (in time and
space) should also be employed

Distributed teams
* Require coordination and info exchange

« Require understanding of (and planning for)
each teammate’s capabilities
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Interactive Exploration Robots

PART 3
Humans on Earth Humans on Earth Humans in orbit Real-time
Robot in space Robot on the Moon Robot on planet telerobotics

@ Human-robotic collaboration and interactions for space exploration



-

Human obot in space

7 on Earth / F
/ / %

W | /:!

i .
e




Space Station In-Flight Maintenance

Extra-Vehicular Activity (EVA)

* Not enough crew time to do everything
(only 1-2 EVAs per year)
« Crew must always carry out “Big 12”
contingency EVA's if needed
= Maintain electrical power system
= Maintain thermal control system

* Prep & tear down: up to 3 hr per EVA

Intra-Vehicular Activity (IVA)

» Crew spends a lot of IVA time on
maintenance (40+ hr/month)
» Routine surveys require 12+ hr/month

= Air quality, lighting, sound level,
video safety, etc.

« Crew must always carry out
contingency IVA surveys

s = Find and repair leaks, etc.
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Space Station Robots
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@ Special Purpose Dexterous Manipulator (“Dextre”)
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Space Station Robots

Robonaut 2
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SPHERES
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Smart SPHERES

ISS Mission Control
(Houston)

T. Fong, M. Micire, et al. (2013) “"Smart SPHERES: a telerobotic free-flyer for
intravehicular activities in space”. Proc. of AIAA Space 2013 (Pasadena, CA).
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Space Station Interior Survey (2012)

lﬁcémber 12, 2012
Crew: Kevin Ford, Expedition 33 Commander 2x speed
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Humans on Earth./ Robot on another world




Mars Rovers

Mars Exploration Rover on Mars
(artist concept)
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Resource Prospector Mission

Mission
» Characterize the nature and distribution
of lunar polar volatiles | | \ o
 Demonstrate in-situ resource T e
utilization: process lunar regolith g gane

Key Points

« Class D / Category 3 Mission
Launch: ~2021
Duration: 6-14 Earth days
Direct-to-Earth communications
Real-time subsurface prospecting

Rover
« Mass: 300 kg (including payload)
e Size:1.4m x 1.4m x 2m
« Max speed: 10 cm/s
@ « Speed made good: 0.5 cm/s
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RP Mission Animation




Real-time Prospecting Field Test (2014)

Goals

* Prospecting. Mature prospecting ops concept for NIRVSS and NSS
instruments in a lunar analog field test

- Real-Time Operations. Improve support software by testing in a setting
where the abundance / distribution of water is not known a priori

« Science on Earth. Understand the emplacement and retention of water
in the Mojave Desert by mapping water distribution / variability

Human-robotic collaboration and interactions for space exploration 19




Prospecting Rover and Instruments
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Real-time Operations (NASA Ames)
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Mojave Volatiles Prospector

Mojave Desert, California
October 2014
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Rover Operator Interface (VERVE
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Science Operations Interface

Exploration Ground Data Systems
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Exploration Ground Data System (xGDS

@00 Google Earth
P Search ar > ] | di | BE Sign in

¥ Places
v (=& My Places
> V& MVP_2151 AP...
v =3 mvp-field : xG...
v (=}S3 MVP Field Test
» M MVP Strateg...
Hyperion M...
& MVP Hillsha...
2 MvP satellit...
@ MvP Slope ...
Site Frame ...
MVP Operat...

v (=1 Live Feeds
v (= Live Positio...
v S Today
v S KRex2 T...
Curre...
E@ Comp...
M Recen...
V& 01d Tr...
» [ /B Past Days
v (=12 Live Instru...
@ NIR 1930 ...

ERMA S [
@ NIR 1930 ... 0, 60
B NIR 2190 ... (7)) > R
%NIR 2190 ... MVPZ\:i'Sl—A—STNog
NIR 2350 ... |
@ NR2640.. | - 270 KRex2§rrack 090
@ NR LW ra...
@ NIRSW ra...
» & NS Sn Scal...
v (=6 NS Sn Scal...
v =9 Data
EE Today
» [ B PastD...
é} Legend
Sun Phase...
@ TextureCam
Q Plans
& Notes
42 Simple crosshairs
This screen
overlay uses
v [ &3 SSERVI Field Work
» & DG Skylight I...
» & DG COTM Arc...
» [ & CratersOfThe...
& NBL Pool Layout
v =58 mvp
v (¥S3 ERT-2 Map D...
M Site Boundary
lﬁf;’ Slope Hazard
@,/_7 Slope Hazard
M7 slope Hazard © 2014 Google
& Hyperion EOL...
D satellite Image

240,
B Hillshade DEM COOSIC earth

Q ||+ |2

» Layers Earth Gallery » Tour Guide Imagery Date: 3/22/2013 lat 35.177806° lon -116.190820° elev 457 m eyealt 499 m

Human-robotic collaboration and interactions for space exploration







"Fastnet” Lunar Libration Point Mission

Orion MPCV at Earth-Moon L2 (EM-L2)
» 60,000 km beyond lunar farside
 Allows station keeping with minimal fuel
» Crew remotely operates robot
* Does not require human-rated lander

Human-robot conops

» Crew remotely operates surface robot
from inside flight vehicle

* Crew works in shirt-sleeve environment
« Multiple robot control modes

T

. Moon’s
Depart Free-Return | Orbit
Earth /7 Trajectory ’F>

Credit: (Lockheed Martin / LUNAR)

> Ll- L2
\ Q.
% Moon Surface
| Mission Start
Surface
t Orion Orbit

Mission End % )
Insertion, ~
‘ L,. 7

@Human-roboﬁc collaboration and interactions for space exploration 27




“Fastnet” Mission Simulation with ISS

. )
Pre-Mission

Planning

Ground teams
plan out telescope
deployment and
initial rover

traverses.

Spring 2013

C Surveying

Crew gathers
information needed
to finalize the
telescope
deployment plan.

| ISS Expedition 36 I
4 4

Telescope
Deployment

AN B Y P,

Crew monitors the

rover as it deploys
each arm of the
telescope array.

Telescope
Inspection

Crew inspects and
documents the
deployed telescope
for possible
damage.

| Chris Cassidy I

17 June 2013

Luca Parmitano I

Karen Nyberg I

26 July 2013
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ISS Test Setup

-
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imagery)

(command sequence)
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K10 rover at NASA Ames
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Robot Interface (Supervisory Control)
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Crew-controlled Telerobotics (2013)
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Crew-controlled Telerobotics (2013)
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Assessment Approach

Metrics

« Mission Success: % task sequences: completed normally, ended abnormally
or not attempted; % task sequences scheduled vs. unscheduled

* Robot Utilization: % time robot spent on different types of tasks; comparison
of actual to expected time on; did rover drive expected distance

* Task Success: % task sequences per session and per task sequence:
completed normally, ended abnormally or not attempted; % that ended
abnormally vs. unscheduled task sequences

» Contingencies: Mean Time To Intervene, Mean Time Between Interventions
* Robot Performance: expected vs. actual execution time on tasks

Data Collection

— « Data Communication: direction (up/down), message type, total volume, etc.

* Robot Telemetry: position, orientation, power, health, instrument state, etc.

» User Interfaces: mode changes, data input, access to reference data, etc.

__+ Robot Operations: start, end, duration of planning, monitoring, and analysis

« Crew Questionnaires: workload (Bedford Scale), situation awareness (SAGAT)

automatic

M. Bualat, D. Schreckenghost, et al. (2014) “Results from testing crew-controlled surface
telerobotics on the International Space Station”. Proc. of 12" |-SAIRAS (Montreal, Canada)

@Human-roboﬁc collaboration and interactions for space exploration 33






Real-time Exploration Telerobotics

Telepresence Remotely Operated Vehicle (TROV)
« Benthic ecology survey of McMurdo Sound (Nov-Dec 1993)
« Remote operations from NASA Ames via satellite (832 kbps downlink)
« Virtual environment + telepresence video (head tracked stereo display)

-

B. Hine, C. Stoker, et al. (1994) “The application of telepresence and virtual reality to
subsea exploration”. Proc. of IARP workshop on mobile robots for subsea environments.
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Telepresence ROV (1993)
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Real-time Exploration Telerobotics

Marsokhod at Kilauea
» Geologic mapping of Southwest Desert at Kilauea (Feb 1995)
« Remote operations from NASA Ames via satellite (T1 link)
« Virtual environment + telepresence video (stereo display)

......

C. Stoker and B. Hine. (1996) “Telepresence control of mobile robots —
Kilauea Marsokhod experiment”. Proc. of AIAA 34th Aerospace Sciences Meeting.
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Marsokhod at Kilauea (1995)
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Lessons from TROV & Marsokhod

Latency

 Latency is only one factor for remote exploration: type of science,
instruments & data, cost, risk, staffing, robot capabilities, etc.

« Remote (robotic) exploration is not dominated by control latency. Data
collection (with instruments), analysis (many steps), and decision
making (strategic and tactical planning) are all far more significant.

Spatial displays
« 3D visualizations is essential for most field studies

« Head-mounted and stereo video displays are pseudo 3D, not true 3D,
which leads to many issues (accomodation errors, etc)

« High levels of presence can be achieved even with limited data.

Real-time telerobotics
» Telepresence (immersive real-time presence) is not a panacea

« Manual control is imprecise and highly coupled to human performance
(skills, experience, training)

@ « Minimizing risk is often (far more) important that efficiency.
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Questions?

Ir;

Intelligent Robotics Group

Intelligent Systems Division
NASA Ames Research Center

irg.arc.nasa.gov
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