

Analysis of Cislunar Transfers from a Near Rectilinear Halo Orbit with High Power Solar Electric Propulsion

Steven L. McCarty, Laura M. Burke, Melissa L. McGuire NASA Glenn Research Center

2018 AAS/AIAA Astrodynamics Specialist Conference August 19-23, 2018 Snowbird, UT

- Purpose
- Reference Transfers
 - NRHO to DRO
 - NRHO to NRHO
 - NRHO to L2 Halo

Power and Mass Sensitivity

- Methodology
- Results
- Conclusion

Purpose

- Reference Transfers
 - NRHO to DRO
 - NRHO to NRHO
 - NRHO to L2 Halo
- Power and Mass Sensitivity
 - Methodology
 - Results
- Conclusion

Purpose

For a massive low thrust solar electric propulsion spacecraft in a *9:2 Lunar Synodic Resonant L2 Southern NRHO (L2S NRHO)*:

- Design efficient reference transfers to:
 - 1. 70,000 km DRO
 - 2. L1 Northern NRHO (L1N)
 - 3. "Flat" EML2 Halo Orbit
- Understand the sensitivity to varying:
 - 1. SEP Power
 - 2. Spacecraft Mass
 - 3. Number of Thrusters

Earth-Moon Rotating Frame

- Purpose
- Reference Transfers
 - Assumptions
 - NRHO to DRO
 - NRHO to NRHO
 - NRHO to L2 Halo
- Power and Mass Sensitivity
 - Methodology
 - Results
- Conclusion

Reference Assumptions

- Spacecraft Assumptions:
 - Transfer Time: < 6 months
 - Initial Mass: 39 t
- SEP Assumptions:
 - SEP Power: 26.6 kW
 - Thrusters: 2 + 2 @ 13.3 kW each
 - Duty Cycle: 90%
- Initial Orbit: 9:2 Lunar Synodic Resonant L2 Southern NRHO
- Destinations:
 - 70,000 km DRO
 - L1 Northern NRHO
 - 3,500 km Flat L2 Halo Orbit

Earth-Moon Rotating Frame

DRO Transfer

L2S NRHO to L1N NRHO

Earth-Moon Rotating Frame

NASA

NRHO to Flat L2 Halo

Earth-Moon Rotating Frame

NASA

- Purpose
- Reference Transfers
 - Assumptions
 - NRHO to DRO
 - NRHO to NRHO
 - NRHO to L2 Halo

Power and Mass Sensitivity

- Methodology
- Results
- Conclusion

Methodology

Data Generation:

- 1. Generate optimal trajectories over a range of initial masses
- 2. Fit a curve to total thrusting time as a function of initial spacecraft acceleration
- 3. Propellant mass (M_{Xe}) can be estimated for any [power, mass, N_{thrusters}] combination:

$$a = \frac{thrust(P, N_{thrusters})}{mass}$$

$$M_{Xe} = \dot{m}(P, N_{thrusters}) * \Delta t_{thrust}(a)$$

• Caveats:

- 1. Neglect change in *a* during transfer because $M_{Xe} \ll M_{s/c}$
- 2. Require well fit curve for $\Delta t_{thrust}(a)$
- 3. Only valid for a specific transfer type

Acceleration Curve Fits

- Thruster On Time vs. Acceleration shows the relative sensitivity of each transfer for a <u>fixed TOF and geometry</u>
- As acceleration decreases, total thrusting time increases
 - DRO transfer is most sensitive to change in acceleration
 - L1N NRHO transfer is least sensitive to change in acceleration

Number of Thrusters

- Power and Number of Thrusters Determines:
 - 1. Thrust
 - 2. $I_{sp} (\propto 1/\dot{m})$
- For input power > 21 kW, can choose between 2 or 3 thrusters

- Purpose
- Reference Transfers
 - Assumptions
 - NRHO to DRO
 - NRHO to NRHO
 - NRHO to L2 Halo

Power and Mass Sensitivity

- Methodology
- Results
- Conclusion

DRO Contours

- Contours of Xe Mass as a function of Initial Mass and SEP Power
- Regions are colored by optimal or required number of thrusters

DRO Contours

- Contours of Xe Mass as a function of Initial Mass and SEP Power
- Regions are colored by optimal or required number of thrusters

L1N NRHO Contours

- Contours of Xe Mass as a function of Initial Mass and SEP Power •
- Regions are colored by optimal or required number of thrusters •

L1N NRHO Contours

- Contours of Xe Mass as a function of Initial Mass and SEP Power
- Regions are colored by optimal or required number of thrusters

Flat L2 Halo Orbit Contours

- Contours of Xe Mass as a function of Initial Mass and SEP Power
- Regions are colored by optimal or required number of thrusters

Flat L2 Halo Orbit Contours

- Contours of Xe Mass as a function of Initial Mass and SEP Power
- Regions are colored by optimal or required number of thrusters

- Purpose
- Reference Transfers
 - Assumptions
 - NRHO to DRO
 - NRHO to NRHO
 - NRHO to L2 Halo
- Power and Mass Sensitivity
 - Methodology
 - Results
- Conclusion

Conclusion

1. Designed efficient low thrust transfers of a 39 t spacecraft:

Transfer	Propellant (kg)	Delta V (m/s)	TOF (days)
DRO	135	85	156
L1N NRHO	68	43	160
Flat L2 Halo	118	74	170

- 2. Characterizing transfer by acceleration and thrusting time is useful for understanding sensitivities
 - Propellant requirements are sensitive to spacecraft acceleration
 - Additional power is not always useful
 - Sometimes more thrusters and lower power (each) is preferable

Thank You.