National Aeronautics and Space Administration

Earth-Based Analogs & Modeling for Exercise Biomechanics in Space Dec. 12th, 2018

Kaitlin Lostroscio

Johnson Space Center

& University of South Florida

Outline

- University Collaboration
- Digital Astronaut Simulation
- Experimental Study
- Results & Takeaways
- Next Steps

National Aeronautics and Space Administration

University Collaboration Digital Astronaut Simulation Experimental Study Results & Takeaways Next Steps

Center for Assistive, Rehabilitation & Robotics Technologies (CARRT) @ USF

Human-Robot Interaction

1

Performance & Physical Rehabilitation

Kaitlin Lostroscio

December 12th, 2018

NA S

Training

NASA Space Technology Research Fellowship (NSTRF17)

National Aeronautics and Space Administration

University Collaboration Digital Astronaut Simulation Experimental Study Results & Takeaways Next Steps

Digital Astronaut Simulation (DAS)

NAS

Digital Astronaut Simulation (DAS)

NAS

Vibration Isolation System (VIS)

NA SA

National Aeronautics and Space Administration

University Collaboration Digital Astronaut Simulation **Experimental Study** Results & Takeaways Next Steps

Human Body Model

van den Bogert, A.J., Geijtenbeek, T., Even-Zohar, O. et al. A real-time system for biomechanical analysis of human movement and muscle function. Med Biol Eng Comput (2013) 51: 1069.

Analog & Digital Signals

NAS

NAS

Specific Objectives

- To develop proof-of-concept for ground based environment for human-in-the-loop testing of VIS dynamics
- 2. To study the effect of platform motion on human kinematic and kinetic response while completing resistive and aerobic exercise.

Specific Objectives

- To develop proof-of-concept for ground based environment for human-in-the-loop testing of VIS dynamics
- 2. To study the effect of platform motion on human kinematic and kinetic response while completing resistive and aerobic exercise.

- DOFs of Interest:
 - 1 Translational
 - 1 Rotational
- Exercises of Interest:
 - Squats
 - Rowing
- Parameters of Interest:
 - Force
 - Motion

Theory

Bulk motion: Sinusoidal

Theory

Exercise & Platform Motion Frequencies

Frequencies Selected	Reason
0.10 Hz	ARED MILT & ISS Acceleration Environment
0.35 Hz	ARED MILT & midway point
0.60 Hz	ARED MILT & exercise point of interest
Self-selected	Nominal

Participants instructed to match platform motion

Experimental Design

IRB Approved Human Subject Testing on CAREN

System Components:

2 DOF of motion platform

Instrumentation:

- Motion Capture Kinematics
- Force Plate Measurement Kinetics

Environmental Distinctions:

- 1G
- No external weight

Experimental Method: Subjects

Subject				
Designation	Gender	Age	Height (m)	Weight (lbs / N)
S1	Female	18	1.73	136.0 / 605.0
S2	Female	22	1.62	121.2 / 539.1
S3	Female	44	1.60	148.2 / 659.2
S4	Male	22	1.86	172.2 / 766.0

Inclusion Criteria

N = 4

- 1. Be between the ages of 18 and 65 years old
- 2. Have no physical impairments
- 3. Be able to complete exercise motions such as squats and vertical rows

Participation

1 session, ~2 hours

Experimental Method: Pre-Test Preparations

NASA

Training

- Exercise Instruction
- Example Videos
- Instructed to match frequency of platform motion

Measurements

- Height & Weight
- Individualized Subject Parameters

Preparations

 Marker placement for motion capture

Experimental Method: Trials

Squat:

#	Exercise	Heave Frequency	Heave Amplitude	Pitch Freq	Pitch Amp
3	Baseline Squat	N/A (Static)	N/A (Static)	N/A	N/A
4	Squat	0.10 Hz	Baseline Measured	N/A	N/A
5	Squat	0.35 Hz	Baseline Measured	N/A	N/A
6	Squat	0.60 Hz	Baseline Measured	N/A	N/A
7	Squat	Baseline Measured Hz	Baseline Measured	N/A	N/A

Row:

#	Exercise	Heave Frequency	Heave Amplitude	Pitch Freq	Pitch Amp
8	Baseline Row	N/A (Static)	N/A (Static)	N/A	N/A
9	Row	0.10 Hz	Baseline Measured	N/A	N/A
10	Row	0.35 Hz	Baseline Measured	N/A	N/A
11	Row	0.60 Hz	Baseline Measured	N/A	N/A
12	Row	Baseline Measured Hz	Baseline Measured	N/A	N/A
13	Row	Baseline Measured Hz	Baseline Measured	Baseline Measured Hz	0.5 deg
14	Row	Baseline Measured Hz	Baseline Measured	Baseline Measured Hz	1 deg
15	Row	Baseline Measured Hz	Baseline Measured	Baseline Measured Hz	2 deg
16	Row	Baseline Measured Hz	Baseline Measured	Baseline Measured Hz	3 deg

NAS

Testing

NAS

National Aeronautics and Space Administration

University Collaboration Digital Astronaut Simulation Experimental Study Results & Takeaways Next Steps

Kinetic Data Processing

- Data Extraction
- Filtering

• Computations

- Resultant Force
- Average Maximum Force
- Average Force Range
- Force Frequency Matching

Squats

Kinetic Results: Ground Reaction Force Profiles

Rows

Kinematic Data Processing

Data Cleaning

Functional Skeletal Model

- Calculates Joint Center
- Joint Angles

Computations

Joint Angle ROM

Kinematic Results

National Aeronautics and Space Administration

University Collaboration Digital Astronaut Simulation Experimental Study Results & Takeaways Next Steps

OpenSim

OpenSim, displaying: Rajagopal, Apoorva, et al. "Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait." IEEE Transactions on Biomedical Engineering 63.10 (2016): 2068-2079. (2016)

- 1. Scaling
- 2. Inverse Kinematics
- 3. Inverse Dynamics
- 4. Static Optimization

OpenSim: http://opensim.stanford.edu/

Seth, A., Hicks J.L., Uchida, T.K., Habib, A., Dembia, C.L., Dunne, J.J., Ong, C.F., DeMers, M.S., Rajagopal, A., Millard, M., Hamner, S.R., Arnold, E.M., Yong, J.R., Lakshmikanth, S.K., Sherman, M.A., Delp, S.L. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. Plos Computational Biology, 14(7). (2018)

Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelan, D.G. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, vol 55, pp 1940-1950. (2007)

JSC Facilities

Active Response Gravity Offload System (ARGOS)

Prototype Immersive Technology Lab (PIT)

Kaitlin Lostroscio

Forward Work

- Enhancing CAREN as an analog for a passive VIS
- Development for active VIS
- PIT & ARGOS data collections
- VIS analyses and design using motion capture & force data from human-in-the-loop testing
- Incorporation of data feedback in exercise systems

Contact

Kaitlin Lostroscio Simulation & Graphics Branch | ER7 Johnson Space Center <u>kaitlin.h.lostroscio@nasa.gov</u>

More information on this topic:

Lostroscio, Kaitlin, "Developing Motion Platform Dynamics for Studying Biomechanical Responses During Exercise for Human Spaceflight Applications" (2018). Graduate Theses and Dissertations.

https://scholarcommons.usf.edu/etd/7191