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SYSTEMS AND METHODS FOR
IMPLEMENTING FLEXIBLE MEMBERS
INCLUDING INTEGRATED TOOLS MADE

FROM METALLIC GLASS-BASED
MATERIALS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The current application claims priority to U.S. Provisional
Application No. 62/132,325, filed Mar. 12, 2015, the dis-
closure of which is incorporated herein by reference.

STATEMENT OF FEDERAL FUNDING

The invention described herein was made in the perfor-
mance of work under a NASA contract NNNI2AA01 C, and
is subject to the provisions of Public Law 96-517 (35 USC
202) in which the Contractor has elected to retain title.

FIELD OF THE INVENTION

The present invention generally relates to the implemen-
tation of flexible members including integrated tools made
from metallic glass-based materials.

BACKGROUND

Engineered mechanisms often rely on a variety of com-
ponents characterized by intentionally distinct geometries
and/or mechanical properties. Thus, for instance, U.S. Pat.
No. 8,789,629 (the '629 patent) discloses terrain traversing
devices having wheels with included microhooks. More
specifically, the abstract of the '629 patent reads:
A terrain traversing device includes an annular rotor

element with a plurality of co-planar microspine hooks
arranged on the periphery of the annular rotor element.
Each microspine hook has an independently flexible
suspension configuration that permits the microspine
hook to initially engage an irregularity in a terrain
surface at a preset initial engagement angle and sub-
sequently engage the irregularity with a continuously
varying engagement angle when the annular rotor ele-
ment is rotated for urging the terrain traversing device
to traverse a terrain surface.

The '629 patent proposes that the referenced microspine
wheel assembly can be made out of any of a variety of
suitable materials including, for example steel and/or a hard
plastic. The disclosure of the '629 patent is hereby incor-
porated by reference in its entirety.

SUMMARY OF THE INVENTION

Systems and methods in accordance with embodiments of
the invention implement flexible members that include inte-
grated tools made from metallic glass-based materials. In
one embodiment, a structure includes: a flexible member
characterized by an elongated geometry and an integrated
tool disposed at one end of the elongated geometry; where
the flexible member includes a metallic glass-based mate-
rial.

In another embodiment, the integrated tool is a hook.
In yet another embodiment, the metallic glass-based

material is a metallic glass matrix composite material.
In still another embodiment, the metallic glass-based

material is characterized by a fracture toughness of greater
than approximately 80 MPa•m112.

2
In still yet another embodiment, flexible member is char-

acterized in that it is fully amorphous.
In a further embodiment, the metallic glass-based material

is characterized in that it has an elastic limit of greater than
5 approximately 1%.

In a still further embodiment, the metallic glass-based
material is characterized in that it has an elastic limit of
greater than approximately 1.5%.
In a yet further embodiment, the metallic glass-based

10 material is characterized in that it has an elastic limit of
greater than approximately 2%.
In a still yet further embodiment, the flexible member is

characterized by a thickness of less than approximately three
times the size of the plastic zone radius of the metallic

15 glass-based material.
In another embodiment, the flexible member is charac-

terized by a thickness of less than approximately 1.5 mm.
In yet another embodiment, the flexible member defines a

plurality of extensions including a plurality of integrated
20 tools disposed at one end of respective extensions.

In still another embodiment, a wheel assembly includes:
at least one rotor element; a plurality of flexible members,
each characterized by an elongated geometry and an inte-
grated tool at the end of the elongated geometry; where: at

25 least one of the plurality of flexible members includes a
metallic glass-based material; and the plurality of flexible
members are approximately uniformly distributed around at
least one rotor element such that the aggregate of the at least
one rotor element and the plurality of flexible members can

30 viably function as a wheel.
In still yet another embodiment, the integrated tool is a

hook.
In a further embodiment, the metallic glass-based material

of at least one flexible member is characterized by a fracture
35 toughness of greater than approximately 80 MPa•mi12.

In a yet further embodiment, a method of forming a
flexible member including an integrated tool, includes:
forming a metallic glass-based material into an elongated
geometry; and deforming the elongated geometry to define

40 a tool at one end of the elongated geometry when the
temperature of the metallic glass-based material is lower
than its respective glass transition temperature; where the
metallic glass-based material is characterized by a fracture
toughness of greater than approximately 80 MPa•mi12.

45 In a still further embodiment, the integrated tool is a hook.
In a still yet further embodiment, the hook is defined by

an angle of greater than approximately 80° relative to the
remainder of the flexible member.

In another embodiment, forming the metallic glass-based
50 material into an elongated geometry includes shearing an

elongated geometry from a sheet of the metallic glass-based
material.
In still another embodiment, the thickness of the elon-

gated geometry is less than approximately three times the
55 size of the plastic zone radius of the metallic glass-based

material.
In yet another embodiment, the thickness of the elongated

geometry is less than approximately 1.5 mm.

60 BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1B illustrate a conventional wheel assembly
that can be implemented within a terrain traversing device.
FIGS. 2A-2E schematically illustrate constructing a flex-

65 ible member including an integrated tool disposed atone end
of the flexible member from a metallic glass-based material
in accordance with certain embodiments of the invention.
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FIG. 3 illustrates an alternative geometry for a flexible

member including a plurality of integrated tools made from
a metallic glass-based material that can be implemented in
accordance with certain embodiments of the invention.

FIG. 4 illustrates a process for implementing a structure 5

including an annular rotor element and a plurality of flexible
members including integrated tools made from metallic
glass-based materials in accordance with certain embodi-
ments of the invention.
FIGS. 5A-513 illustrate the incorporation of flexible mem- 10

bers including integrated tools made from metallic glass-
based materials with an annular rotor element in accordance
with certain embodiments of the invention.
FIGS. 6A-6D illustrate the elasticity of flexible members

made from metallic glass-based materials in accordance 15
with certain embodiments of the invention.
FIGS. 7A-713 illustrate the manufacture of a wheel assem-

bly incorporating a plurality of flexible members including
integrated tools made from metallic glass-based materials in
accordance with certain embodiments of the invention. 20

FIGS. 8A-8D illustrates a terrain traversing vehicle incor-
porating wheel assemblies including flexible members that
include integrated tools made from metallic glass-based
materials in accordance with certain embodiments of the
invention. 25

DETAILED DESCRIPTION

Turning now to the drawings, systems and methods for
implementing flexible members that include integrated tools 30
made from metallic glass-based materials are illustrated. In
many embodiments of the invention, the flexible members
are elongated and include tools disposed at one end of its
elongated geometry. In many embodiments, the integrated
tool is a hook. In a number of embodiments, flexible 35
members that include integrated hooks are disposed around
the periphery of an annular rotor element. In numerous
embodiments, either one or a plurality of such annular rotor
elements are configured to operate as a wheel assembly.

For context, FIGS. 1A-113 illustrate a conventional wheel 40
assembly in accordance with the disclosure of the '629
patent. In particular, FIG. lA illustrates a wheel assembly
102 that includes an annular rotor element 104 with attached
flexible member/microspine hook assemblies 106, which
themselves each include a flexible member 108 and an 45
attached microspine hook 110. It is depicted that the
microspine hooks 110 are attached to the flexible members
108 via a polymer 112. The flexible member/microspine
hook assemblies 106 are distributed around the periphery of
the annular rotor element 104. The flexible members 108 50
conventionally have been made from a flexible metal, such
as spring steel or nitinol. The microspine hooks have con-
ventionally been implemented via standard steel fishing
hooks. FIG. 1B illustrates the flexibility of the flexible
suspensions 108. As disclosed in the '629 patent, the 55
depicted wheel assembly can be incorporated in a terrain
traversing device, such that the wheels can operate to
facilitate the traversal of rigorous terrain. In particular, the
respective flexible suspensions permit respective microspine
hooks to initially engage an irregularity in a terrain surface 60
at a preset initial engagement angle when the annular rotor
element is rotated for urging the terrain traversing device to
traverse a terrain surface.

Although configurations such as those depicted in FIGS.
1A-113 manufactured from combinations of steel, nitinol, 65
and/or polymer can be effective, there exists room for
improvement. For example, the bonding of a distinct hook to

4
a typical metallic flexible member using a polymer can
define a weakness within the assembly. In particular, the
polymer/microspine hook bonding can be susceptible to
failure in these configurations. Such assemblies can benefit
from a unibody construction, and more particularly from the
incorporation of metallic glass-based materials.

Metallic glasses, also known as amorphous alloys,
embody a relatively new class of materials that is receiving
much interest from the engineering and design communities.
Metallic glasses are characterized by their disordered
atomic-scale structure in spite of their metallic constituent
elements i.e. whereas conventional metallic materials typi-
cally possess a highly ordered atomic structure, metallic
glass materials are characterized by their disordered atomic
structure. Notably, metallic glasses typically possess a num-
ber of useful material properties that can allow them to be
implemented as highly effective engineering materials. For
example, metallic glasses are generally much harder than
conventional metals, and are generally tougher than ceramic
materials. They are also relatively corrosion resistant, and,
unlike conventional glass, they can have good electrical
conductivity. Importantly, metallic glass materials lend
themselves to relatively easy processing in certain respects.
For example, the forming of metallic glass materials can be
compatible with injection molding processes. Thus, for
example, metallic glass compositions can be cast into
desired shapes.

Nonetheless, the practical implementation of metallic
glasses presents certain challenges that limit their viability
as engineering materials. In particular, metallic glasses are
typically formed by raising a metallic alloy above its melting
temperature, and rapidly cooling the melt to solidify it in a
way such that its crystallization is avoided, thereby forming
the metallic glass. The first metallic glasses required extraor-
dinary cooling rates, e.g. on the order of 106 K/s, and were
thereby limited in the thickness with which they could be
formed. Indeed, because of this limitation in thickness,
metallic glasses were initially limited to applications that
involved coatings. Since then, however, particular alloy
compositions that are more resistant to crystallization have
been developed, which can thereby form metallic glasses at
much lower cooling rates, and can therefore be made to be
much thicker (e.g. greater than 1 mm). These metallic glass
compositions that can be made to be thicker are known as
`bulk metallic glasses' (`BMGs"). As can be appreciated,
such BMGs can be better suited for investment molding
operations.
In addition to the development of BMGs, ̀bulk metallic

glass matrix composites' (BMGMCs) have also been devel-
oped. BMGMCs are characterized in that they possess the
amorphous structure of BMGs, but they also include crys-
talline phases of material within the matrix of amorphous
structure. For example, the crystalline phases can exist in the
form of dendrites. The crystalline phase inclusions can
impart a host of favorable materials properties on the bulk
material. For example, the crystalline phases can allow the
material to have enhanced ductility, compared to where the
material is entirely constituted of the amorphous structure.
BMGs and BMGMCs can be referred to collectively as
BMG-based materials. Similarly, metallic glasses, metallic
glasses that include crystalline phase inclusions, BMGs, and
BMGMCs can be referred to collectively as metallic glass-
based materials or MG-based materials.
The potential of metallic glass-based materials continues

to be explored, and developments continue to emerge. For
example, in U.S. patent application Ser. No. 13/928,109, D.
Hofmann et al. disclose the implementation of metallic
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glass-based materials in macroscale gears. The disclosure of
U.S. patent application Ser. No. 13/928,109 is hereby incor-
porated by reference in its entirety, especially as it pertains
to metallic glass-based materials, and their implementation
in macroscale gears. Likewise, in U.S. patent application
Ser. No. 13/942,932, D. Hofmann et al. disclose the imple-
mentation of metallic glass-based materials in macroscale
compliant mechanisms. The disclosure of U.S. patent appli-
cation Ser. No. 13/942,932 is hereby incorporated by refer-
ence in its entirety, especially as it pertains to metallic
glass-based materials, and their implementation in mac-
roscale compliant mechanisms. Moreover, in U.S. patent
application Ser. No. 14/060,478, D. Hofmann et al. disclose
techniques for depositing layers of metallic glass-based
materials to form objects. The disclosure of U.S. patent
application Ser. No. 14/060,478 is hereby incorporated by
reference especially as it pertains to metallic glass-based
materials, and techniques for depositing them to form
objects. Furthermore, in U.S. patent application Ser. No.
14/163,936, D. Hofmann et al., disclose techniques for
additively manufacturing objects so that they include metal-
lic glass-based materials. The disclosure of U.S. patent
application Ser. No. 14/163,936 is hereby incorporated by
reference in its entirety, especially as it pertains to metallic
glass-based materials, and additive manufacturing tech-
niques for manufacturing objects so that they include metal-
lic glass-based materials. Additionally, in U.S. patent appli-
cation Ser. No. 14/177,608, D. Hofmann et al. disclose
techniques for fabricating strain wave gears using metallic
glass-based materials. The disclosure of U.S. patent appli-
cation Ser. No. 14/177,608 is hereby incorporated by refer-
ence in its entirety, especially as it pertains to metallic
glass-based materials, and their implementation in strain
wave gears. Moreover, in U.S. patent application Ser. No.
14/178,098, D. Hofmann et al., disclose selectively devel-
oping equilibrium inclusions within an object constituted
from a metallic glass-based material. The disclosure of U.S.
patent application Ser. No. 14/178,098 is hereby incorpo-
rated by reference, especially as it pertains to metallic
glass-based materials, and the tailored development of equi-
librium inclusions within them. Furthermore, in U.S. patent
application Ser. No. 14/252,585, D. Hofmann et al. disclose
techniques for shaping sheet materials that include metallic
glass-based materials, including using localized thermoplas-
tic deformation and using cold working techniques. The
disclosure of U.S. patent application Ser. No. 14/252,585 is
hereby incorporated by reference in its entirety, especially as
it pertains to metallic glass-based materials and techniques
for shaping sheet materials that include metallic glass-based
materials, including using localized thermoplastic deforma-
tion and using cold-working techniques. Additionally, in
U.S. patent application Ser. No. 14/259,608, D. Hofmann et
al. disclose techniques for fabricating structures including
metallic glass-based materials using ultrasonic welding. The
disclosure of U.S. patent application Ser. No. 14/259,608 is
hereby incorporated by reference in its entirety, especially as
it pertains to metallic glass-based materials and techniques
for fabricating structures including metallic glass-based
materials using ultrasonic welding. Moreover, in U.S. patent
application Ser. No. 14/491,618, D. Hofmann et al. disclose
techniques for fabricating structures including metallic
glass-based materials using low pressure casting. The dis-
closure of U.S. patent application Ser. No. 14/491,618 is
hereby incorporated by reference in its entirety, especially as
it pertains to metallic glass-based materials and techniques
for fabricating structures including metallic glass-based
materials using low pressure casting. Furthermore, in U.S.

6
patent application Ser. No. 14/660,730, Hofmann et al.
disclose metallic glass-based fiber metal laminates. The
disclosure of U.S. patent application Ser. No. 14/660,730 is
hereby incorporated by reference in its entirety, especially as

5 it pertains to metallic glass-based fiber metal laminates.
Additionally, in U.S. patent application Ser. No. 14/971,848,
A. Kennett et al. disclose techniques for manufacturing
gearbox housings made from metallic glass-based materials.
The disclosure of U.S. patent application Ser. No. 14/971,

io 848, is hereby incorporated by reference in its entirety,
especially as it pertains to the manufacture of metallic
glass-based gearbox housings.

Notwithstanding all of these developments, the vast
potential of metallic glass-based materials has yet to be fully

15 appreciated. For instance, the suitability of metallic glass-
based materials for implementation as flexible members that
include integrated tools (e.g. the flexible suspension mem-
bers microspine assemblies discussed in the '629 patent)
has yet to be fully explored. Conventionally, the structures

20 described in the '629 patent have been fabricated from
conventional engineering metals like steel, nitinol, and/or
polymers (as depicted in FIGS. 1A-113). However, these
structures can greatly benefit in a number of respects from
the incorporation of metallic glass-based materials. For

25 instance, metallic glass-based materials can imbue the
wheels with improved fatigue characteristics, improved
hardness, improved wear-resistance properties, improved
flexibility, improved corrosion resistance, improved resil-
ience against harsh environmental conditions, etc. Thus, for

30 instance, the enhanced flexibility of many MG-based mate-
rials (e.g. having an elastic limit of up to 2% or more
compared with steel which typically has an elastic limit of
on the order of 1%) can allow better performance in terrain
traversing applications. At the same time, the inherent

35 hardness of many MG-based materials can further provide
for improved hook performance; e.g. the hooks may not
wear as easily as they interact with rigorous terrain. Metallic
glass-based materials can also be readily cast or otherwise
then noplastically formed into any of a variety of complex

40 geometries. Whereas conventionally, the fabrication of these
structures involved adjoining various components to achieve
the desired geometry, metallic glass-based materials can
viably be ̀net shape' cast (or ̀near net shape' cast) into these
structures; this can greatly enhance manufacturing efli-

45 ciency. Methods for fabricating flexible members with inte-
grated tools that include metallic glass-based materials are
now discussed below.
Methods for Implementing Flexible Members Including
Integral Tools from Metallic Glass-Based Materials

50 In many embodiments of the invention, flexible members
including integral tools are fabricated from metallic glass-
based materials. Any suitable manufacturing technique can
be utilized to form the flexible member in accordance with
embodiments of the invention. For example, in many

55 embodiments, metallic glass-based materials are cold
worked to shape them into the desired geometry e.g. they
are shaped at temperatures less than or equal to approxi-
mately room temperature (e.g. 72° F.). More broadly stated,
cold-working can be said to occur when an MG-based

60 material is shaped at a temperature less than its respective
glass transition temperature. Thus for instance, FIGS. 2A-2E
illustrate the fabrication of a flexible member including an
integrated tool from a metallic glass-based material via
cold-forming in accordance with an embodiment of the

65 invention. In particular, FIG. 2A illustrates a metallic glass-
based material to be formed into the desired structure. In the
illustrated embodiment, the MG-based material is DVI.
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FIG. 2B illustrates that the metallic glass-based composition examples of suitable metallic glass-based materials are listed

has been sliced into a thin sheet characterized by a thickness above, it should be reiterated that any suitable metallic

of I mm. FIG. 2C illustrates that the metallic glass-based glass-based composition can be incorporated in accordance

composition has been further sliced to create an elongated 5 with embodiments of the invention; for example, any of the

geometry. FIG. 2D illustrates that the end is then bent to an metallic glass-based compositions listed in the disclosures

angle greater than approximately 80° to create the desired cited and incorporated by reference above can be imple-

geometry; more particularly, the bent end defines a hook that mented. As alluded to above, in many embodiments, the

is the integrated tool. The inherent fracture toughness of 10
implemented MG-based composition is based on the manu-

DVI allows it to accommodate the depicted extreme bend- facturing technique to be applied. For example, where cold

ing. FIG. 2E illustrates the final geometry of two created working will be used to shape the MG-based composition,

structures. Thus, contrary to what may have been previously a MG-based composition that is capable of forming a

believed, it is illustrated that it is possible to bend (via cold
15

MG-based material characterized by a relatively high frac-

working) an elongated geometry made from a MG-based ture toughness can be implemented. In a number of embodi-

material to an extreme angle without worrying about com- ments, the MG-based material is characterized by a fracture

promising the structural integrity of the piece. This is largely toughness of greater than approximately 80 MPa•mi12. In

a function of the inherent fracture toughness of the respec- several embodiments, the MG-based material is character-

tive metallic glass-based material. Accordingly, while cold- 
20 ized by a fracture toughness of greater than approximately

forming to this degree may be suitable for certain MG-based 100 MPa•mi12. In many embodiments, the MG-based com-

materials, it may not be suitable for all MG-based materials. position is implemented in the form of a matrix composite

A respective material must have at least a minimum fracture characterized by a particularly high fracture toughness (e.g.

toughness in order to be able to withstand cold-working to 25 greater than approximately 80 MPa•m112 or approximately

this degree. Additionally, a MG-based material's ability to 100 MPa•mi12). In a number of embodiments, the MG-based

be cold-worked as described may be a function of the material that is to be formed into a flexible member via

thickness of the MG-based material flexible member. Thus, cold-forming is characterized by a thickness that is less than

for instance, in many embodiments a flexible member to be 30 approximately three times the thickness of the plastic zone

cold worked to form the integrated tool is characterized by radius of the respective MG-based material. In numerous

a thickness of less than 1.5 mm. Cold forming can enable the embodiments, the MG-based material that is to be formed

easy manufacture of this useful geometry. into a flexible member via cold-forming is characterized by

While cold-working a flexible member to form an inte- 35 a thickness that is less than plastic zone radius of the

grated tool from a metallic glass-based material has been respective MG-based material. In several embodiments, the

illustrated, it should be clear that any of a variety of MG-based material is characterized by a thickness of less
processes can be implemented to form a flexible member than approximately 1.5 mm. These thicknesses can facilitate
including an integrated tool in accordance with embodi- the desired formability. In many instances, the particular
ments of the invention. For example, in many embodiments, 40
localized thermoplastic deformation processes as disclosed MG-based composition to be implemented is based on an

in U.S. patent application Ser. No. 14/252,585 incorporated assessment of the anticipated operating environment for the

by reference above are implemented, e.g. the flexible mem- flexible member. For example, where it desired that the
ber can be bent when a region of the flexible member is flexible member be relatively less massive, a titanium based
above its respective glass transition temperature to define the 45 MG-based material can be implemented. In many instances,
hook. In many embodiments, direct casting techniques are
utilized; casting can be a particularly eff cient manufacturing the selection of the MG-based material to be implemented is

strategy for the bulk fabrication of the described structures. based on the desire for one of: environmental resilience,

Any suitable manufacturing technology can be implemented toughness, wear resistance, hardness, density, machinability,
in accordance with embodiments of the invention. 50 and combinations thereof. In numerous embodiments, the

Moreover, note that any suitable MG-based composition MG-based material to be implemented is based on the desire
can be utilized to form a flexible member having an inte-
grated tool in accordance with embodiments of the inven- to have relatively high resistance to wear (which can be

tion; embodiments of the invention are not limited to a correlated with hardness) and relatively high flexibility

particular composition. For example, in many instances, the 55 (which can be correlated with elastic strain limit). In many
utilized alloy composition is a composition that is based on embodiments, the hardness of the MG-based material to be
one of: Ti, Zr, Cu, Ni, Fe, Pd, Pt, Ag, An, Al, Elf, W, implemented is characterized by a value greater than
Ti Zr Be, Cu Zr, Zr Be, Ti Cu, Zr Cu Ni Al,
Ti Zr—Cu Be and combinations thereof. In the instant approximately 50 Rc according to the Rockwell scale. In a

context, the term ̀ based on' can be understood to mean that 60 number of embodiments, the MG-based material to be

the specified element(s) are present in the greatest amount implemented has an elastic limit greater than approximately
relative to any other present elements. Additionally, within 1%. For reference, Tables 1-6 list materials data that can be
the context of the instant application, the term "MG-based relied on in selecting a metallic glass-based composition to
composition" can be understood reference an element, or
aggregation of elements, that are capable of forming a 65 be implemented. Any suitable MG-based material listed in

metallic glass-based material (e.g. via being exposed to a the tables below can be implemented in accordance with

sufficiently rapid, but viable, cooling rate). While several various embodiments of the invention.
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TABLE 1

Material Properties of MG-Based Materials relative to Heritage Engineering Materials

Density Stiffness, E Tensile Tensile Elastic Limit Specific Hardness
Material (g/cc) (GPa) Yield (MPa) UTS (MPa) N Strength (HRC)

SS 15500 H1024 7.8 200 1140 1170 <1 146 36
T1-6A1-4V STA 4.4 114 965 1035 <1 219 41
T1-6A1-6V-4S'n STA 4.5 112 1035 1100 <1 230 42
Nitronic 60 CW 7.6 179 1241 1379 <1 163 40
Vascomax C300 8.0 190 1897 1966 <1 237 50
Zr-BMG 6.1 97 1737 1737 >1.8 285 60
Ti-BMGMC 5.2 94 1362 1429 >1.4 262 51
Zr-BMGMC 5.8 75 1096 1210 >1.4 189 48

TABLE 2

Material Properties of Select MG-Based Materials as a function of Composition

BMG bee p aY 6m- ey E T,
name atomic % weight % N N (g/cm3) (MPa) (MPa) (%) (GPa) (K)

DV2 Ti44Zr2OV12Cu5Beig T141.9Zr363V12.1Cu6313e34 70 30 5.13 1597 1614 2.1 94.5 956
DVl Ti48Zr2OV12Cu5Be15 Ti443Zr352Vi1sCu6113e26 53 47 5.15 1362 1429 2.3 94.2 955
DV3 Ti56Zr18V1oCu4Be12 Ti51.6Zr31.6V98Cu49Be21 46 54 5.08 1308 1309 2.2 84.0 951
DV4 Ti62Zr15V1oCu4Beg Ti573Zr264V98Cu4913e16 40 60 5.03 1086 1089 2.1 83.7 940
DVAII Ti60Zr16V9Cu3A13Beg Ti558Zr284V89Cu37A11.6Be1.6 31 69 4.97 1166 1189 2.0 84.2 901
DVAI2 Ti67Zr11V1oCu5Al2Be5 Ti624Zr19.5V9.9Cu62A11Be09 20 80 4.97 990 1000 2.0 78.7 998
Ti-6-4a Ti86.1A110.3V3.6 TigoA16V4 (Grade 5 Annealed) na na 4.43 754 882 1.0 113.8 1877
Ti-6-4s Ti86.1A110.3V3.6 [Ref] TigoA16V4 (Grade 5 STA) na na 4.43 1100 1170 -1 114.0 1877
CP-Ti Tiloo Tlloo (Grade 2) na na 4.51 380 409 0.7 105.0 -1930

TABLE 3

Material Properties of Select MG-Based Materials as a function of Composition

Cy- Eror 6Y ey E p G CIT RoA
Alloy (MPa) (%) (MPa) (%) (GPa) (g/cm3) (GPa) (J) (%) v

Zr36.6Ti314Nb7Cu5.9Be19.1 (DHI) 1512 9.58 1474 1.98 84.3 5.6 30.7 26 44 0.371

Zr383Ti329Nb73Cu6.2Be15.3 (DH2) 1411 10.8 1367 1.92 79.2 5.7 28.8 40 50 0.373

Zr39.6T133.9Nb76Cu64Be125 (DH3) 1210 13.10 1096 1.62 75.3 5.8 27.3 45 46 0.376

Zr412Ti138Cu125NiloBe225 (Vitreloy 1) 1737 1.98 97.2 6.1 35.9 8 0 0.355

Zr56.2T113.8Nb5.00u6.9N15.6Be12.5 (LM 2) 1302 5.49 1046 1.48 78.8 6.2 28.6 24 22 0.375

45

TABLE 4 TABLE 4-continued

Material Properties as a Function of Composition and Structure, Material Properties as a Function of Composition and Structure,
where A is Amorphous, X, is Crvstalline, and C is Composite where A is Amorphous, X, is Crystalline, and C is Composite

A/X/C 2.0 Hv E (GPa)
50

A/X/C 2.0 Hv E (GPa)

(CuZr42Al7BeIO)Nb3 A 626.5 108.5
(CuZr46A15Y2)Nb3 A 407.4 76.9 Ni40Zr28.5Til6.5Cu5BelO C 668.2 112.0
(CuZrAl7Be5)Nb3 A 544.4 97.8 Ni56Zr17Ti13Si2Sn3Be9 X 562.5 141.1
(CuZrAl7Be7)Nb3 A 523.9 102.0 Ni57Zr18Ti14Si2Sn3Be6

55
X 637.3 139.4

Cu4OZr4OA110Be10
Cu41Zr4OA17Be7Co5

A 604.3
C 589.9

114.2
103.5

Ti33.18Zr30.51Ni5.33Be22.88Cu8.1 A 486.1 96.9

Cu42Zr41A17Be7Co3 A 532.4 101.3 Ti40Zr25Be3OCr5 A 465.4 97.5

Cu47.5Zr48A14CoO.5 X 381.9 79.6 Ti40Zr25Ni8Cu9Bel8 A 544.4 101.1

Cu47Zr46A15Y2 A 409.8 75.3 T145Zr16N19CulOBe20 A 523.1 104.2
Cu50Zr5O X 325.9 81.3 Vit 1 A 530.4 95.2
CuZr4lAl7Be7Cr3 A 575.1 106.5 60 Vit105 (Zr52.5T15Cu17.9N114.6A110) A 474.4 88.5
CuZrAl5Be5Y2 A 511.1 88.5

Vit 106 A 439.7 83.3
CuZrAl5N13Be4 A 504.3 95.5

Zr55Cu3OA110Ni5 A 520.8 87.2
CuZrA17 X 510.5 101.4

CuZrA17Ag7 C 496.1 90.6 Zr65Cu17.5A17.5N110 A 463.3 116.9

CuZrAl7N15 X 570.0 99.2 DHl C 391.1 84.7

Ni40Zr28.5Til6.5Bel5 C 715.2 128.4 65 GHDT (Ti30Zr35Cu8.2l3e26.8) A 461.8 90.5

Ni40Zr28.5Til6.5Cu5AII0 X 627.2 99.3
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TABLE 5

Fatiaue Characteristics as a Function of Composition

Material
Fracture Geometry

strength (MPa) (mm) Loading mode' Frequency (Hz) R-ratio
Fatigue,

limit (MPa)
Fatigue
ratio'

Zr56.2Cu6.9Ni5.6Til3.8Nb5.0Be12.5 Composites 1480 3 x 3 x 30 4PB 25 0.1 -296 0.200
[62]
Zr412Cu125Ni1OTi138Be225 [49] 1900 3 x 3 x 50 4PB 25 0.1 -152 0.080

Zr412Cu125Ni1OTi13sBe224 [74] 1900 2 x 2 x 60 3PB 10 0.1 768 0.404

Zr412Cu125Ni1OT'13sBe225 [74] 1900 2 x 2 x 60 3PB 10 0.1 359 0.189

Zr44Ti11NilOCulOBe25 [75] 1900 2.3 x 2.0 x 85 4PB 5-20 0.3 550 0.289

Zr44Ti11NilOCulOBe25 [75] 1900 2.3 x 2.0 x 85 4PB 5-20 0.3 390 0.205

Zr525Cu179A11ONi145Ti5 [77] 1700 3.5 x 3.5 x 30 4PB 10 0.1 850 0.500
(Zr58Ni13.5Cu18Al10.4)99Nb1 [76] 1700 2 x 2 x 25 4PB 10 0.1 559 0.329
Zr55Cu30Ni5AllO [78] 1560 2 x 20 x 50 Plate bend 40 0.1 410 0.263

TABLE 6

Fatigue Characteristics as a Function of Composition

Material
Fracture

strength (MPa)
Geometry
(mm)

Loading Frequency
mode' (Hz) R-ratio

Fatigue
limit (MPa)

Fatigue
ratio'

Zr56.2Cu6.9N15.6T1138Nb5.oBe12.5 Composites [56] 1480 02.98 TT 10 0.1 239 0.161
Zr55Cu30A110Ni5 Nano [85] 1700 2 x 4 x 70 TT 10 0.1 -340 0.200

Zr412Cu125Ni1OT'13sBe225[55] 1850 02.98 TT 10 0.1 703 0.380

Zr412Cu125Ni1OT'13sBe225[55] 1850 02.98 TT 10 0.1 615 0.332

Zr412Cu125Ni1OTi13sBe225[56] 1850 02.98 TT 10 0.1 567 0.306

Zr412Cu125Ni1OT'13sBe225 1801 1900 CC 5 0.1 -1050 0.553

Zr412Cu125Ni1OT'13sBe225 1801 1900 TC 5 -1 -150 0.079
Zr40Cu40A'10 [53] 1821 02.98 TT 10 0.1 752 0.413
Zr40Cu30A'10Ni10 [53] 1900 02.98 TT 10 0.1 865 0.455
Zr50Cu37AI,oPd3 [57] 1899 02.98 TT 10 0.1 983 0.518
Zr50Cu37AI,oPd3 [81] 1899 05.33 TT 10 0.1 -900 0.474

Zr525Cu179A11ONi146Ti5 [82] 1660 6 x 3 x 1.5 TT 1 0.1

Zr525Cu179A110Ni146Ti5 [51] 1700 02.98 TT 10 0.1 907 0.534
Zr50Cu20A110NisTi3 [82] 1580 6 x 3 x 1.5 TT 1 0.1
Zr44Cu15A110Ni1O [84] 1300 3 x 4 x 16 TT 20 0.1 -280 0.215
Zr55Cu30A11ONi5 [83] 1560 1 x 2 x 5 TT 0.13 0.5

Furthermore, although a particular geometry for a flexible
member with an integrated tool is illustrated and described
with respect to FIGS. 2A-2E, it should be clear that any
suitable geometry for a flexible member including an inte-
grated tool can be incorporated in accordance with embodi-
ments of the invention. For example, in many embodiments,
a flexible member includes a plurality of extensions and a
plurality of integrated tools. Thus, for instance, FIG. 3
illustrates a geometry for a flexible member including a
plurality of extensions with a plurality of integrated tools in
accordance with certain embodiments of the invention. As
can be appreciated from the discussion above, any suitable
manufacturing techniques can be used to implement the
depicted geometry. For example, the depicted geometry
could be cast from a MG-based composition in accordance
with embodiments of the invention.

In many embodiments, the flexible members described
above are incorporated within the context of a terrain
traversing vehicle as disclosed in the terrain traversing
devices disclosed in the '629 application. Thus, for example,
FIG. 4 illustrates a process for implementing a wheel
including microhooks that can be incorporated within a
terrain traversing device as disclosed in the '629 patent. In
particular, FIG. 4 illustrates that the process 400 includes
forming 410 a plurality of flexible members that include
integrated hooks from metallic glass-based materials. As
before, any suitable metallic glass-based material can be
incorporated in accordance with embodiments of the inven-

40 
tion, including any material referenced above. Additionally,
any suitable manufacturing technique can be used to form
the flexible members from the metallic glass-based materi-
als, e.g. cold forming or direct casting. The method 400
further includes affixing 420 the plurality of formed flexible

45 members to an annular rotor element. Any suitable affixing
technique can be implemented in accordance with embodi-
ments of the invention. For example, in many embodiments,
the flexible member is welded to the annular rotor element.
In a number of embodiments, a rapid capacitive discharge

50 technique is utilized to affix the flexible member to the
annular rotor element. FIGS. 5A-513 schematically illustrate
using a rapid capacitive discharge technique to affix the
flexible member to an annular rotor element in accordance
with certain embodiments of the invention. In particular,

55 FIG. 5A diagrams using rapid capacitive discharge to affix a
flexible member 502 to an annular rotor element 504 in
accordance with an embodiment of the invention. FIG. 5B
illustrates an annular rotor element including a plurality of
flexible members in accordance with an embodiment of the

60 invention.
Notably, metallic glass-based materials are often charac-

terized by their high elastic limits. For example, whereas
conventional metals have elastic limits on the order of 1%,
metallic glass-based materials can have elastic limits as high

65 as 2% or more. This high elasticity can allow them to be
viably implemented within the terrain traversing devices
disclosed in the '629 patent. FIGS. 6A-6D visually illustrate
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the flexibility that flexible members made from metallic
glass-based materials can be made to possess.
FIGS. 7A-713 illustrate the formation of a wheel including

a plurality flexible members with integrated hooks made
from metallic glass-based materials in accordance with 5

embodiments of the invention. In particular, FIG. 7A illus-
trates a plurality of annular rotor elements including a
plurality of flexible members made from metallic glass-
based materials. FIG. 7B illustrates an assembled wheel
incorporated the plurality of annular rotor elements and io
associated flexible members. In particular, the annular rotor
elements can be adjoined such that flexible members are
evenly distributed around the adjoined annular rotor ele-
ments such that the assembly can operate as a wheel.
FIGS. 8A-8D illustrates a terrain traversing device that 15

incorporates wheels including flexible members with inte-
grated hooks made from metallic glass-based materials in
accordance with embodiments of the invention. In particu-
lar, FIG. 8A illustrates an isometric view of the device; FIG.
8B illustrates a view looking down on the device; FIG. 8C 20
illustrates a side-view of the device; and FIG. 8D illustrates
a close up of the wheel assembly. Notably, the flexible
members and integrated hooks made from MG-based mate-
rials were sufficiently structurally integral to allow the
device to crawl vertically up a cinder block. 25

As can be inferred from the above discussion, the above-
mentioned concepts can be implemented in a variety of
arrangements in accordance with embodiments of the inven-
tion. For example, while a hook has been given as the
example of an integrated tool, any suitable integrated tool 30
can be implemented in accordance with embodiments of the
invention. For instance, any implement configured to facili-
tate mobility or grip/engage a surface can be implemented.
Accordingly, although the present invention has been
described in certain specific aspects, many additional modi- 35
fications and variations would be apparent to those skilled in
the art. It is therefore to be understood that the present
invention may be practiced otherwise than specifically
described. Thus, embodiments of the present invention
should be considered in all respects as illustrative and not 40
restrictive.
What claimed is:
1. A terrain traversing device comprising:
a device body;
at least one rotor element rotatably interconnected with 45

said device body and configured to provide a propul-
sive force thereto;

a plurality of elongated flexible members, each having a
first end and a second end and formed of a metallic
glass-based material having a thickness of less than 50
approximately three times the size of the plastic zone
radius of the metallic glass-based material and an
elastic limit of at least 1.0%;

an integrated tool disposed at the first end of each of the
elongated flexible members, wherein the integrated tool 55
is at least one hook formed by a bend in the elongated
flexible member;

wherein the elongated flexible member and the integrated
tool comprise a unitary body; and

wherein only the second end of each of the elongated 60
flexible members is attached to the at least one rotor
element, such that each elongated flexible member is
configured to at least partially wrap about the at least
one rotor element during operation; and

14
wherein the plurality of elongated flexible members are

distributed around the at least one rotor element such
that the aggregate of the plurality of elongated flexible
members form an outer wheel of integrated tools about
the at least one rotor element.

2. The terrain traversing device of claim 1, wherein the
integrated tool comprises a plurality of hooks.

3. The terrain traversing device of claim 1, wherein the
metallic glass-based material is a metallic glass matrix
composite material.

4. The terrain traversing device of claim 1, wherein the
metallic glass-based material is characterized by a fracture
toughness of greater than approximately 80 MPa•m112.

5. The terrain traversing device of claim 1, wherein the
metallic glass-based material is fully amorphous.

6. The terrain traversing device of claim 1, wherein the
metallic glass-based material is characterized in that it has
an elastic limit of greater than approximately 1.5%.

7. The terrain traversing device of claim 1, wherein the
metallic glass-based material is characterized in that it has
an elastic limit of greater than approximately 2%.

8. The terrain traversing device of claim 1, wherein the
elongated flexible member is characterized by a thickness of
less than approximately 1.5 mm.

9. The terrain traversing device of claim 1, wherein the
elongated flexible member defines a plurality of extensions
including a plurality of integrated tools disposed at one end
of the respective extensions.
10. A terrain traversing device comprising:
a device body;
at least one rotor element rotatably interconnected with

the device body, and configured to provide a propulsive
force thereto;

a plurality of elongated flexible members, each having a
first end and a second end with an integrated tool
disposed at the first end, wherein each of the elongated
flexible members comprises a unitary body with the
integrated tool formed of a metallic glass-based mate-
rial;

wherein the metallic glass-based material has a fracture
toughness of at least 80 MPa•m112, an elastic limit of at
least 1.0%, and allows bending by cold working of the
elongated flexible member with a thickness of less than
approximately three times the size of the plastic zone
radius of the respective metallic glass-based material to
an angle as small as 80° without compromising the
structural integrity of the elongated flexible member;

wherein the integrated tool is a hook formed by a bend in
the elongated flexible member, and wherein the bend
forms an angle with the elongated flexible member of
greater than 80°; and

wherein only the second end of each of the elongated
flexible members is attached to the at least one rotor
element, such that each elongated flexible member is
configured to at least partially wrap about the at least
one rotor element during operation; and

wherein the plurality of elongated flexible members are
distributed around the at least one rotor element such
that the aggregate of the plurality of elongated flexible
members form an outer wheel of integrated tools about
the at least one rotor element.
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