
Delay Tolerant Network Routing as a Machine
Learning Classification Problem

Rachel Dudukovich
NASA Glenn Research Center

Cleveland, Ohio 44135
Email: rachel.m.dudukovich@nasa.gov

Christos Papachristou
Case Western Reserve University

Cleveland, Ohio 44106
Email: cap2@case.edu

Abstract—This paper discusses a machine learning-based ap-
proach to routing for delay tolerant networks (DTNs) [1]. DTNs
are networks which experience frequent disconnections between
nodes, uncertainty of an end-to-end path, long one-way trip
times, and may have high error rates and asymmetric links.
Such networks exist in deep space satellite networks, very rural
environments, disaster areas and underwater environments. In
this work, we use machine learning classifiers to predict a set of
neighboring nodes which are the most likely to deliver a message
to a desired location based on message history delivery informa-
tion. We use the Common Open Research Emulator (CORE) [2]
to emulate the DTN environment based on real-world location
traces and collect network traffic statistics from the Bundle
Protocol implementation IBR-DTN [3]. The software architecture
for classification-based routing, analysis and preparation of the
network history data and prediction results are discussed.

I. INTRODUCTION

This paper focuses on a scenario in which a set of mo-
bile and non-mobile nodes operate in a relay or message
ferry scheme, transferring data opportunistically as they come
in contact with neighboring nodes. Mobile nodes such as
CubeSats, exploration rovers and drones collect data and
perform automated tasks, following both predictable and ran-
dom movement patterns. The network topology continuously
changes due to nodes moving out of range as well as loss
of connectivity due to other factors such as environmental
interference and other errors. Delay tolerant networking (DTN)
is a field of research focused on networks in which link
connectivity may be frequently disrupted. The presence of
a continuous end-to-end path to a destination is unknown.
Generally at least some, if not all of the nodes are mobile.
This type of network can be seen in space networks, very
rural areas, disaster areas and other MANETs (Mobile Ad hoc
Networks). This paper is organized in the following sections.
The introduction discusses several DTN networking scenarios
and an introduction to the DTN architecture. The Related Work
section discusses several opportunistic routing algorithms and
machine learning improvements suggested for them. Next, we
discuss the development of a classification based router, its
implementation and structure of the data samples. We discuss
the selection of a base classifier and the development of
a multi-label classification scheme. Finally, we review our
results obtained from Naive Bayes, Decision Tree and K-
Nearest Neighbors base classifiers and several well known

multi-label methods (Chain Classifiers, One-versus-All, Label
Powerset and Ensemble of Chain Classifiers).

An example scenario can be illustrated with the Mars
exploration rovers and Mars orbiter satellites as shown in
Figure 1. The exploration rovers perform automated data
collection tasks on a planet surface. These nodes may transfer
their collected data to one or more planetary orbiters or directly
to earth, though data transfer through the orbiter is generally
much faster. While currently deep space communication is
scheduled well in advance in a predetermined manner, this
work focuses on future scenarios with an increasing number
of surface landed assets and orbiting vehicles that perform
data collection and transfer in an autonomous fashion. Another
related scenario consists of CubeSats or drone swarms that
perform image collection of a planet’s surface which can then
be transmitted to the earth directly or via relay satellites.
In both cases, there is a series of smaller nodes with likely
slower links, limited resources in terms of memory, processing
capability and power budget which must send data to a
relay system possessing much faster communication links and
greater data capacity. The small nodes may aggregate their
data together to send in a single transfer to the relay or they
may individually communicate with the relay.

Fig. 1. Deep Space Scenario with Rovers and Orbiter Relay [4]

The use of small mobile “worker” nodes (drones, CubeSats,
other UAVs) for data collection has several advantages in that
broader areas can be covered than with a single larger node,
they are often significantly cheaper, easier to deploy (lighter
and more compact) and provide redundancy. A sucessful
routing scheme should expect that failure of “worker” nodes
is quite possible due to the relatively inexpensive nature of
the nodes and that they may have tasks which could cause
a node to be lost or destroyed (a drone mission to study

1

hurricane or storm conditions). In addition, new nodes might
be deployed at any time. For this reason, we choose not to rely
on routing mechanisms that require all nodes in the network
or a topology to be known. While some network assets may be
highly predictable such as a low earth orbit relay system, they
may choose to use simpler routing methods such as Contact
Graph Routing (CGR) [5], which make use of the known
schedules of assets. Indeed, it is quite possible that the network
may consist of several zones, some of which operate on a
predetermined schedule of contacts and others that opperate
in an ad-hoc, opportunistic manner as mentioned in [6].

Successful routing in this scenario must address several
issues. The first is that while the relay nodes themselves likely
exhibit very predictable behavior, the smaller “worker” nodes
may move with either random or predictable patterns as they
perform autonomous tasks (image collection, spectrometry,
radiometry). In addition to disruptions in connectivity caused
by nodes moving out of range of one another there are also
unpredictable disruptions that may be caused by environmental
conditions. There is often link asymmetry between forward
and return links in the case of satellite communications, so
data maybe sent at a much faster rate than acknowledgements
or status information may be sent back. It is also common
that the path from source nodes to a final destination will
consist of several different protocol stacks, as shown in Figure
2. The Mars rovers use Proximity-1 datalink protocol and UHF
physical layer to the Mars orbiter, which the uses CCSDS AOS
datalink with Ka-band to earth. Once the data is received at
the Earth ground station, internet protocols can be used [4].
This creates the need for some common layer between nodes.
In addition, nodes may have limited resources, particularly the
worker nodes.

The DTN architecture [1] and Bundle Protocol [7] address
several of the aforementioned issues. Bundle protocol is an
overlay protocol meaning that it creates a network layer be-
tween the application layer and underlying transport, datalink
and physical layers. This provides a common layer between
heterogeneous network stacks. Bundle protocol is a store and
forward based protocol, so data will be stored during a network
disruption and then transmitted once connectivity is restored.
Data can be transmitted to a destination without a known
end-to-end path by relaying to nodes which may eventually
come in contact with the destination. In addition, this overlay
concept abstracts away the differences in lower level details
so that nodes may use a variety of different protocols from the
transport to physical layers as appropriate for their particular
conditions. Nodes in close proximity together on a planet’s
surface may use a standard TCP based network. Long haul
links such as a Mars relay to earth may use protocols designed
for extended distances such as LTP [4]. The bundle layer will
abstract away these differences, which will be handled by the
lower level mechanisms. The bundle layer will be concerned
with storage of the data until an appropriate transmission time,
custody transfer of the data and routing of the data.

In addition to Bundle Protocol, DTN also allows for an
opportunistic discovery mechanism IP Neighborhood Discov-

ery (IPND) [8]. IPND allows nodes to announce themselves
to previously unknown nodes and exchange connectivity in-
formation. In this way, it is not necessary to know node
addressing and schedules in advance. If two nodes come in
contact with one another, they will exchange information using
discovery beacons in the form of UDP datagrams.

Fig. 2. Example Mission Operations Center to Deep Space Rover Protocol
Stack [4]

II. RELATED WORK

There has been much work done in the field of opportunistic
routing for DTNs [9], [10], [11], [12], [13], [14]. Many are
based on the basic method of epidemic routing in which nodes
encountering one another trade whatever messages the other
does not already have. In this way, as multiple nodes encounter
each other, multiple copies of the message are propagated
throughout the network. Unless the message expires before
the destination is reached, or it is in fact addressed to some
node that is unreachable within the network by any other
node, the message will be delivered. The drawback of this
approach is that the numerous copies of the same message in
the network consume node data storage and message transfer
time unnecessarily. Most opportunistic routing protocols focus
on a way to determine how to choose the best nodes to copy
a message to, meaning nodes which have the greatest chance
of encountering the destination node.

PRoPHET (Probabilistic Routing Protocol using the History
of Encounters and Transitivity) is one such routing protocol.
PRoPHET uses the past encounters of nodes to determine
the likelihood that a node will encounter the destination
node. The PRoPHET routing protocol attempts to reduce the
number of replicated bundles in the network by calculating
the probability of successful message delivery to a given
destination. PRoPHET is based on human mobility patterns
and the observation that a large number of contact oppor-
tunities between two nodes follow a non-random trend [6].
Messages are replicated and sent to neighboring nodes that
have a high probability of delivering it to its destination.
PRoPHET determines this likelihood based on a delivery
predictability metric. Each node maintains a vector of delivery
predictabilities for all nodes encountered and exchanges this
information with other nodes during an initial contact phase.
The delivery predictability is calculated whenever two nodes

2

are in contact. Nodes which are frequently in contact have a
higher delivery predictability and as such the algorithm will
choose that pair of nodes as the preferred path.

There are several works which apply machine learning
techniques to routing in DTNs [15], [16], [17]. Decision
tree-based classifiers are applied to make improved routing
decisions for epidemic routing by classifying nodes using an
attribute vector and a derived classification label [16]. The
attributes considered are the node ID, a region code where the
message was received, the message reception time, the lobby
index (a measure of neighborhood density), the time interval
τ between message reception and successful transmission, and
the distance δ between where the message was received and
transmitted. The region code is determined by dividing the
grid of possible node locations into 1km×1km squares. The
class label is calculated as r = δ

τ . The value of r is then made
into discrete class labels C = {C1, ..., Cm} by separating each
instance into approximately equal bins based on a threshold
value. The method explored in [15] also uses network regions,
a time-based index and message destination as attributes for
a Bayesian classifier. Both methods use stored network traffic
history as samples to train their classifiers.

III. ALGORITHM DEVELOPMENT

Our design attempts to solve the routing problem as a
machine learning classification task. We choose this method
for several reasons. The solution should be adaptable to a
variety of conditions, new nodes entering the network, leaving
the network and operating in potentially different time regimes
(meaning that surface nodes might be following a certain
route which follows a pattern predictable over several hours,
other nodes might follow an orbit which repeats every 90
minutes, other nodes may follow a pattern which repeats once
a day). In addition, we wanted a solution which might be
able to determine patterns of disruption or patterns of network
traffic which are not immediately obvious. The techniques
of machine learning can use data derived from the network
environment to determine such patterns.

There are several classes of machine learning methods
which may be considered for routing. Machine learning al-
gorithms are often categorized as supervised or unsupervised.
In supervised learning a large set of data is used to train the
learner. The learner develops rules from the dataset in order
to classify new instances of the data based on the training
set. Data in the training set is labeled and the learner makes
predictions which may be correct or incorrect. In unsupervised
learning, the algorithm is used to model the data and learn
more about associations within the data set. Another approach
to learning is reinforcement learning in which the learner
makes decisions initially in a trial-and-error method. Decisions
which result in a positive outcome earn the learner a reward.
In this way, the learner determines what are good and bad
decisions in a given instance.

Reinforcement learning has been recommended for routing
protocols in several works [18], [19], [17]. There are however
some drawbacks in the case of DTNs. One is that a function

must be determined to enable the learner to receive rewards.
In DTNs, the goal is usually to minimize delivery time and
maximize delivery probability. Using time as a metric in DTNs
may lead to inconclusive results since delay times may vary
either on network conditions which are out of the control of
the learner (propagation delays between nodes, for example)
or delays may occur because of poor routing choices. Delivery
predictability is a good indicator of routing success, however
in many cases in DTNs, it may be unknown at the source
node if the message was in fact delivered. Protocols such
as TCP and LTP can ensure reliable delivery but since these
rely on acknowledgments or retransmission requests from the
destination, there may be considerable delay before this is
known at the source node depending on the distance between
nodes and the data rate. It may be preferred in terms of speed
and efficiency to send data in simple datagrams (UDP or LTP
green segments). Within Bundle Protocol, delivery receipts and
custody transfer can be requested at the bundle layer, but again
it is limiting to assume that these mechanisms will always be
used. It can be prohibitive to assume that acknowledgments
and receipts will be propagated back to the sender and much
work has been done in the DTN community to try address the
drawbacks of having potentially long round-trip times to send a
message and receive an acknowledgement back. Therefore, we
would like to avoid a protocol that relies on acknowledgement,
delivery receipts or status packets, particularly the case in
which the timeliness of receiving such feedback is important to
the performance of the algorithm. In the case of reinforcement
learning, if the learner relies on positive feedback from the
destination to make better decisions, this feedback could come
at quite a time later and result a series of poor performance.

Our focus is to address learning the best possible path in the
network to a given destination as a time series prediction prob-
lem. The goal is essentially to determine the future network
state based on the history of the network. There are several
factors that will influence which route a bundle should take
and will be used as input data to the learning algorithm. They
are the current and future topology of the network (the set
of neighboring nodes for the source, destination and relaying
nodes), the duration of the contact period, data rate, buffer
capacity and location of each neighbor. Each of these features
will change in time, though we expect that some or all will
follow some predictable periodicity. We consider this length of
time the epoch and will divide each epoch into time slices. This
is essentially the concept of having one day (epoch) which is
then divided into 24 hours. Each node will have some pattern
of mobility and data generation within the epoch that will
likely repeat itself over time.

We selected three well-known classifiers (Naive Bayes,
Decision Tree and K-Nearest Neighbors), to determine which
would provide the best performance. These classifiers are
both simple and intuitively fit the described problem. Nodes
are following a given pattern throughout the epoch (humans
driving to work every day at the same time) and so it is
reasonable to expect that they will continue to follow this
pattern in the next time segment (drive home at the same

3

time as well and return back at a similar time the next day).
The input to our classifier is based on an attribute vector X
consisting of the time index in the epoch, the source node, the
destination node, and if the message was delivered or not (1
or 0). The label data Y, or output of the classifier, is the set of
nodes that the message was forwarded to. This is encoded as
an n-bit string where n is the number of nodes in the network.
If the message has visited node i, then the bit in position i is
set, it is zero otherwise. The classifier is trained with historical
values for each message sent in a test emulation consisting
of attributes X and the forwarded node string corresponding
to each message. A subset of the test data is withheld to
validate the model. Only the X attribute string (time, source
and destination) is given to the model and it will output a
prediction for the most likely set of nodes a message will be
forwarded to. The performance of the classifier is evaluated
by comparing the actual output Y of the test set to the output
of the prediction. Once a suitable model has been obtained,
this can be integrated into a routing software module that will
supply a set of nodes that are the best candidates to forward
a message to based on the current time, source node and
destination node. Figure 3 shows the high level architecture
for this routing scheme and Figure 4 shows the concept of the
attribute vector X and output variable Y.

Fig. 3. High Level Learning Architecture

Fig. 4. Example Classifier Attribute Vector and Prediction

The method described divides the routing classification
problem into n separate problems, with one classifier that
produces a binary output indicating a node is or is not a
member of the set of nodes along a given route. This can be
considered a multi-label classification approach, in particular

the Binary Relevance method (BR) [20]. This is one of the
simplest methods for multi-label problems and uses a problem
transformation approach. A single classification problem with
multiple outputs is transformed into multiple classification
problems. This method has been critiqued for the fact that all
labels are classified independently, without taking into account
interdependence between outputs. A large amount of work in
multi-label classification has been focused on determining the
relationships between labels to improve classification accuracy.

Classifier Chains [21] (CC) also transform the multi-label
problem into a set of individual binary classifications, however
the attribute space for each model is extended with the binary
label relevances of all previous classifiers, forming a chain.
This takes associations between previously classified labels
into account when performing classification of the next label.
For this reason, selection of the order in which labels are
classified may influence the outcome of how the classifier
performs. A poor choice of order can negatively impact
performance. In addition, one drawback of the CC approach is
that errors can be propagated through the chain, for example
by the early choice of a poor order further impacting the
performance down the rest of the chain. The Ensemble of
Classifier Chains (ECC) attempts to correct this issue by using
multiple chains of randomly ordered classifiers, so that the
impact of order selection will be decreased overall [21].

The above mentioned approach uses previous successful
paths taken to try to predict a satisfactory path in the next
epoch. However, one of the strengths of machine learning
and classification is to take into account multiple previously
observed attributes to give an overall probability for a given
outcome. Additional features such as location, buffer capacity
and data rate may improve performance by taking into account
possible delays caused by slow links, or excessive queueing
times. We first begin to evaluate different node attributes by
taking into account node location. Our approach is to use the
well known K-means clustering algorithm [22] to determine
regions in which nodes frequently visit, which can then be
used as an attribute to our classifier, much like the region
code used in [16]. Rather than simply dividing the area into
equal partitions, the K-means clustering algorithm will provide
a data-driven approach to grouping node locations.

IV. IMPLEMENTATION

In order to develop our routing algorithm to work in
conjunction with an actual implementation of the Bundle
Protocol and IPND protocol, we selected IBR-DTN to use
as the basis for our software development. IBR-DTN [3], [23]
is a lightweight Bundle Protocol package that was designed
specifically with embedded systems in mind. Several perfor-
mance analysis [24] have shown it to have bundle throughput
comparative to ION [25] and DTN2 [26] Bundle Protocol
implementations, while also being able to run on very resource
constrained platforms such as the Technologic Systems TS-
7500 SBC (ARM 9 running at 250 MHz with 64 MiB RAM)
[27], [28]. IBR-DTN is an event driven architecture. The
arrival of new bundles, discovery of new neighbors, transfer

4

of bundles and loss of link connectivity all trigger events
within the system which run in parallel threads. IBR-DTN
provides implementations of flooding based routing, epidemic
routing and PRoPHET routing, which served as examples for
the development of our classification-based router.

To execute complete implementations of the bundle and
discovery protocols, the CORE (Common Open Research
Emulator) [2], [29] was used as an emulation test bed. CORE
uses Linux containers (LXC) to create multiple lightweight
virtual machines on a single host. CORE accurately emulates
the OSI layers 3 and above (application, presentation, session,
transport and network layers) using an actual Linux stack
while the data link and physical layers are greatly simplified.
EMANE (Extendable Mobile Ad-hoc Network Emulator) [30]
can be intergrated with CORE for a higher fidelity emulation
of the lower network layers. For this work, CORE was used
without EMANE since the central focus was routing algorithm
development and testing and a detailed model of the radio
interface was out of scope and unnecessary at this time.
CORE models the radio interface with a given range, data
rate and delay. Nodes are moved in the emulation scenario
using mobility scripts based on the NS-2 network simulator
script format, a Python API or through manually dragging
on the canvas. Communication links are disconnected when
nodes move out of range of one another. Since each node
appears as an instance of the host operating system, common
Linux tools may be used on each node to automate data
generation and logging, such as shell and Python scripts. The
mobility scenario generation tool BonnMotion [31] was used
to generate a variety of node mobility scripts based on the
Random Walk mobility model. In addition, mobility traces
from ZebraNet [32], a DTN experiment that traced the location
of multiple zebras in the wild, were also used to provide more
realistic patterns of movement than synthetic traces created
with BonnMotion. Figure 5 illustrates the emulation tool-
chain. A network of 10 IBR-DTN nodes was emulated in
CORE using 3 different mobility scenarios: Random Walk
from BonnMotion, ZebraNet UTM1 and UTM2 traces. Rout-
ing during the data collection phase was done using both
Epidemic and PRoPHET methods, both using IPND discovery
and the TCP convergence layer. Bundles consisting of 10 kB
files were sent to a randomly selected destination at a random
interval between 5 and 20 seconds. Events from the IBR-
DTN log were used to determine when and to where bundles
where created, forwarded and delivered. This information was
logged in each node and saved to a central processing node
for later analysis. SQLite [33] was used to organize the data in
database tables for efficient access to the training data. SQLite
provides a Python API which allows importing data into
pandas dataframes [34] for easy processing and manipulation
by the Scikit-learn machine learning library [35] and other
Python modules.

Data for each node are divided into time indices (slices of
time) within each learning epoch. Samples for the classifier are
formatted as {delivery indicator (1 or 0), source node number,
destination node number, forwarded node number and time

index}. This data was then split into attributes X consisting
of the delivery status, source, destination and time index. An
output variable Y is created for each node, with a value of 1
indicating the bundle had been forwarded to this node and 0
otherwise. This numeric data is then normalized, centered and
scaled (each atrribute made approximately standard normally
distributed) using Scikit-learn [35]. The data was divided in 5
test and train sets using K-fold cross validation. Each classifier
was then fitted to the training data once for each node and then
scored for accuracy on a separate test set of data from the K-
folds. After training, the model can be saved for further use
without retraining using Python Pickle persistence or HDF5
files. The training phase is the most computation heavy aspect
of a learning problem, so this is done in an offline manner. The
trained model can be imported at run time and used to make
new predictions for suggested paths in the IBR-DTN routing
module. This approach greatly minimizes any performance
impacts that might be due to the prediction computations or
the use of an embedded Python interpreter in C++. It is a very
small and efficient number of computations actually done in
Python within the routing module, since the majority of the
computation has been done offline to generate the learning
model.

Fig. 5. Emulation Tool Chain

In a separate training phase, K-means clustering was used to
assign regions based on locations of the nodes throughout the
emulation period. The general set of software tools discussed
previously were used, however the number of nodes was varied
from 10 to 20 nodes during different emulation scenarios,
though the same ZebraNet dataset was used for mobility
scripting. Node positions are collected from the previous epoch
and stored to the database, then K-means clustering is used
to determine the node regions, with the number of clusters
varying from 5 to 17 in different emulation runs. These cluster
regions are then used to determine if a bundle should be

5

forwarded to a neighboring node. If the neighboring node will
be in the destination node’s region during the time period
from the current time to a “look ahead” time of 10% of
the overall emulation time, the bundle will be forwarded.
This time period was arbitrarily chosen to allow for contacts
which do not currently exist but will eventually exist, to be
taken into account. Future work could be done to determine
what is the best way to determine this tolerance parameter.
Figure 6 shows a visualization of dividing the node locations
into 8 different clusters. It should be noted that clustering
was performed with all locations during the entire epoch,
essentially time was not taken into consideration during the
calculations. After clustering, the region is assigned back to the
database entry corresponding to a given node at a given time
based on the known location coordinates at that time. There
are more sophisticated clustering methods for time series data
[36], [37] that could be evaluated as part of future work.

Fig. 6. Example of Assigning Node Location Regions with K-means
Clustering

V. EVALUATION

To validate the multi-label classification performance, there
are four well known multi-label prediction metrics used. Two
related metrics for multi-label classification are Hamming loss
and zero-one loss [38]. Hamming loss calculates the fraction
of labels that are incorrectly classified. That is:

LH(y,h(x))) =
1

m

m∑
i=1

Jyi 6= hi(x)K. (1)

In Eq. 1 LH(y,h(x) is the Hamming loss function, where y
is the set of m observed labels for a given instance and h(x)
is the output of the classifier (the m predicted labels). The
expression JXK evaluates to 1 if X is true and 0 otherwise. The
Hamming loss is in contrast to zero-one loss which considers
the entire prediction incorrect if any label in the prediction is
incorrect, as shown in Eq. 2:

Ls(y,h(x))) = Jy 6= (h(x))K. (2)

Hamming loss is a more lenient metric which scores based
on individual labels. In both Hamming loss and zero-one loss,

values tending toward zero indicate good performance whereas
values tending toward one indicate a higher percentage of
misclassification. The F1 score is as a weighted average of
the precision and recall. Precision and recall are calculated
by counting the total true positives tp, true negatives tn, false
negatives fn and false positives fp for examples classified as
label l. Micro-average precision and recall are defined in Eqs.
3 and 4, respectively [39]:

Pmicro−avg =

m∑
i=1

tpi

m∑
i=1

(tpi + fpi)
(3)

Rmicro−avg =

m∑
i=1

tpi

m∑
i=1

(tpi + fni)
. (4)

Micro-averaged F1 score is given by Eq 5:

F1micro−avg =
2× Pmicro−avg ×Rmicro−avg
Pmicro−avg +Rmicro−avg

(5)

The Jaccard similarity score, or multi-label accuracy [40] is
the size of the intersection of two label sets (the predictions
and true labels) divided by the size of the union of the two
label sets. In both Jaccard similarity score and F1 scores, 1
is the best score and 0 the worst. We have selected several
metrics as it is well known in machine learning problems that
it is often the case that there is a trade-off between metrics,
with classifiers performing well in some metrics, performing
poorly by other standards. Therefore, to get a complete picture
of the performance it is necessary to consider several metrics.

In both the synthetic mobility scenarios and real world
traces, Decision Tree based classifiers performed the best
across all four metrics. The base classifier selected had a
much greater impact on performance than either the under-
lying routing method used to generate the training data or
the method of multi-label classification. Figure 7 shows the
accuracy of classifying individual nodes based on previous
data recorded from routing with several routing algorithms
(PRoPHET, epidemic and flooding). Classifications were done
using Naive Bayes, Decision Tree, and K-Nearest Neighbor
classifiers. This was done to see if there was any dependence
on the routing used during the training phase, as well as which
base classifiers might be the best choice for our multi-label
implementation. Figures 8 - 11 show the various metrics for
our multi-label classification approach. From these results it
seems that Decision Tree based classification is a promising
method for the base classifier, and this seemed to have the
greatest impact on performance, even more so than the multi-
label approach used (Independent classifiers, Chain classifiers,
Ensemble and Label Powerset). Table 1 shows the average
results from this series of testing comparing epidemic routing,
flooding and a multi-label classification approach.

6

TABLE I
MULTI-LABEL CLASSIFICATION ROUTING RESULTS

Routing Bundles Sent Percent Delivered Overhead
Epidemic 1446.5 75.5 4.7

ML Classification 1403.0 62.2 4.1
Flooding 1451.5 80.4 11.1

Fig. 7. Classifier Accuracy for ZebraNet UTM2 Dataset

Fig. 8. Micro-Averaged F1 Score

Fig. 9. Jaccard Similarity core

Fig. 10. Hamming Loss

Fig. 11. Zero-One Loss

In order to study how to best use location regions based
on K-means clustering, a series of testing with a varying
number of nodes and clusters was performed. It can be seen
that there are potential performance gains when an appropriate
number of clusters are selected for a given number of nodes
and potential locations. While this performance may not be a
significant improvement on its own, our intent is to use the
node region as one of many attributes to the classification
algorithm. This information can be paired with the multi-label
history based approach described above, as well as buffer
predictions and other node attributes. It should be noted that
there was an overall better performance (percentage of bundles
delivered) as the bundle storage mechanism was changed
to SQLite in this series of tests, as opposed to the IBR-
DTN default storage, which allowed for a much larger bundle
storage area, meaning more bundles could be accepted by
relaying nodes. Table 2 shows the comparison of epidemic
versus cluster based routing with a varying number of nodes
and clusters.

VI. CONCLUSION

Our results suggest that machine learning classification is
a viable method to predict network traffic and determine the
most likely nodes to be encountered in a given path which can
be used to make more informed routing decisions, reducing
overhead in epidemic-based routing approaches. The often
time and resource consuming task of training a learning algo-
rithm can be done in an offline manner, with data stored from
an earlier time. Once the learning model has been generated,
it can be exported to nodes in the network which simply

7

TABLE II
CLUSTER-BASED ROUTING RESULTS

Routing # Nodes #Clusters % Delivered Overhead
Epidemic 10 NA 97.86 11.64
Clustering 10 5 94.82 7.3
Clustering 10 8 98.7 10.95
Epidemic 15 NA 94.23 18.5
Clustering 15 5 97.3 19.07
Clustering 15 8 93.59 17.6
Clustering 15 11 96.17 18.75
Epidemic 20 NA 99.5 42.79
Clustering 20 14 97.27 30.44
Clustering 20 17 96.97 31.23

need to perform the prediction calculation which is much less
intensive than training. This method was explored as opposed
to learning in real-time, since many classification algorithms
involve a training phase, followed by model validation before
they can be used to make predictions on new instances of
data. However, it is possible in some algorithms to update the
model as new data arrives, such that the model is constantly
adapted. We leave this approach for future work.

REFERENCES

[1] V. Cerf, S. Burleigh, and K. Fall, “Delay-tolerant networking architec-
ture,” https://tools.ietf.org/html/rfc4838, 04 2007.

[2] J. Ahrenholz, T. Goff, and B. Adamson, “Integration of the CORE and
EMANE Network Emulators,” in Proceedings of the 2011 IEEE Military
Communications Conference. IEEE, 2011, pp. 1870–1875.

[3] M. Doering, S. Lahde, J. Morgenroth, and L. Wolf, “IBR-DTN: An
Efficient Implementation for Embedded Systems,” 01 2008, pp. 117–
120.

[4] The Consultative Committee for Space Data Systems, Rationale, Sce-
narios, and Requirements for DTN in Space, 2010.

[5] S. Burleigh, “Contact Graph Routing,” https://tools.ietf.org/html/draft-
burleigh-dtnrg-cgr-00, 2009.

[6] A. Lindgren and A. Doria, “Probabilistic Routing Protocol for Intermit-
tently Connected Networks,” https://tools.ietf.org/html/draft-lindgren-
dtnrg-prophet-02, 2006.

[7] K. Scott and S. Burleigh, “Bundle Protocol Specification,”
https://tools.ietf.org/html/rfc5050, 2007.

[8] D. Ellard, R. Altmann, and A. Gladd, “DTN IP Neighbor Discovery
(IPND),” https://tools.ietf.org/html/draft-irtf-dtnrg-ipnd-02, 11 2012.

[9] P. Mundur and M. Seligman, “Delay Tolerant Network Routing: Beyond
Epidemic Routing,” in 2008 3rd International Symposium on Wireless
Pervasive Computing, May 2008, pp. 550–553.

[10] A. Balasubramanian, B. Levine, and A. Venkataramani, “Replication
Routing in DTNs: A Resource Allocation Approach,” IEEE/ACM Trans-
actions on Networking, vol. 18, pp. 596–609, 2010.

[11] M. Rodolfi, “DTN Discovery and Routing: From Space Applications to
Terrestrial Networks,” Master’s thesis, 2014.

[12] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spray and Wait:
An Efficient Routing Scheme for Intermittently Connected Mobile
Networks,” in SIGCOMM05 Workshops, 2005.

[13] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “MaxProp:
Routing for Vehicle-Based Disruption-Tolerant Networks,” in Proceed-
ings IEEE INFOCOM 2006. 25TH IEEE International Conference on
Computer Communications, April 2006, pp. 1–11.

[14] R. Dudukovich and D. Raible, “Transmission Scheduling and Routing
Algorithms for Delay Tolerant Networks,” in In Proceeding of the 34th
International Communications Satellite Systems Conference.

[15] S. Ahmed and S. Kanhere, “A Bayesian Routing Framework for Delay
Tolerant Networks,” in In Proceedings of the 2010 IEEE Wireless
Communications and Networking Conference, 2010.

[16] L. Portugal-Poma, C. Marcondes, H. Senger, and L. Arantes, “Applying
Machine Learning to Reduce Overhead in DTN Vehicular Networks,” in
Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos
SBRC 2014, 2014.

[17] R. Dudukovich and A. Hylton, “A Machine Learning Concept for DTN
Routing,” in Proceeding of the 2017 IEEE International Conference on
Wireless for Space and Extreme Environments, 2017.

[18] M. Littman and J. Boyan, “Packet Routing in Dynamically Changing
Networks: A Reinforcement Learning Approach,” in Proceedings of the
6th International Conference on Neural Information Processing Systems,
1993, pp. 671–678.

[19] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “A machine
learning approach to routing,” CoRR, vol. abs/1708.03074, 2017.
[Online]. Available: http://arxiv.org/abs/1708.03074

[20] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
Int J Data Warehousing and Mining, vol. 2007, pp. 1–13, 2007.

[21] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier Chains for
Multi-label Classification,” Mach. Learn., vol. 85, no. 3, pp. 333–359,
Dec. 2011. [Online]. Available: http://dx.doi.org/10.1007/s10994-011-
5256-5

[22] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the Fifth Berkeley Sympo-
sium on Mathematical Statistics and Probability, Volume 1: Statistics.
Berkeley, Calif.: University of California Press, 1967, pp. 281–297.
[Online]. Available: https://projecteuclid.org/euclid.bsmsp/1200512992

[23] J. Morgenroth, “IBR-DTN - A Modular and Lightweight Implementation
of the Bundle Protocol,” https://github.com/ibrdtn/ibrdtn.

[24] J. Morgenroth, “Event-driven Software-Architecture for Delay- and
Disruption-Tolerant Networking,” Ph.D. dissertation, Technischen Uni-
versität Braunschweig, 2015.

[25] S. Burleigh, Interplanetary Overlay Network (ION) Design and Opera-
tion, JPL, 03 2016.

[26] DTN2 Manual, http://dtn.sourceforge.net/DTN2/doc/manual/.
[27] W.-B. Pöttner, J. Morgenroth, S. Schildt, and L. Wolf, “Performance

Comparison of DTN Bundle Protocol Implementations,” in Proceedings
of the 6th ACM Workshop on Challenged Networks, ser. CHANTS ’11.
New York, NY, USA: ACM, 2011, pp. 61–64. [Online]. Available:
http://doi.acm.org/10.1145/2030652.2030670

[28] S. Schildt, J. Morgenroth, W. Pöttner, and L. Wolf, “IBR-DTN: A
Lightweight, Modular and Highly Portable Bundle Protocol Implemen-
tation,” Electronic Communications of the EASST, vol. 37, 2011.

[29] U.S. Naval Research Laboratory, “Common Open Research Emulator,”
https://www.nrl.navy.mil/itd/ncs/products/core.

[30] U.S. Naval Research Laboratory, “Extendable Mobile Ad-hoc Network
Emulator,” https://www.nrl.navy.mil/itd/ncs/products/emane.

[31] “BonnMotion A Mobility Scenario Generation and Analysis Tool,”
http://sys.cs.uos.de/bonnmotion/, accessed 7/3/2018.

[32] Y. Wang, P. Zhang, T. Liu, C. Sadler, and M. Martonosi, “Move-
ment Data Traces from Princeton ZebraNet Deployments,” CRAWDAD
Database. http://crawdad.cs.dartmouth.edu/, 2007.

[33] SQLite Consortium, “Sqlite,” http://www.sqlite.org, accessed 7/3/2018.
[34] W. McKinney, “pandas: a Foundational Python Library for Data Anal-

ysis and Statistics,” 2011.
[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[36] R. Langone, R. Mall, and J. A. K. Suykens, “Clustering data over time
using kernel spectral clustering with memory,” in 2014 IEEE Symposium
on Computational Intelligence and Data Mining (CIDM), Dec 2014, pp.
1–8.

[37] K. S. Xu, M. Kliger, and A. O. Hero, Iii, “Adaptive evolutionary
clustering,” Data Min. Knowl. Discov., vol. 28, no. 2, pp. 304–336, Mar.
2014. [Online]. Available: http://dx.doi.org/10.1007/s10618-012-0302-x

[38] K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier, “Regret
analysis for performance metrics in multi-label classification: The case
of hamming and subset zero-one loss,” in Machine Learning and
Knowledge Discovery in Databases, J. L. Balcázar, F. Bonchi, A. Gionis,
and M. Sebag, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 280–295.

[39] A. Santos, A. Canuto, and A. F. Neto, “A Comparative Analysis of
Classification Methods to Multi-label Tasks in Different Application
Domains,” International Journal of Computer Information Systems and
Industrial Management Applications, vol. 3, pp. 218–227, 2011.

[40] M. Zhang and Z. Zhou, “A Review on Multi-Label Learning Al-
gorithms,” IEEE Transactions on Knowledge and Data Engineering,
vol. 26, no. 8, August 2014.

8

