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ARCUS MISSION DESIGN:  STABLE LUNAR-RESONANT HIGH 
EARTH ORBIT FOR X-RAY ASTRONOMY 

Laura Plice,* Andres Dono Perez,† Lisa Policastri,‡ John Carrico§, and 
Mike Loucks** 

 

The Arcus mission, proposed for NASA’s 2016 Astrophysics Medium Explorer 

(MIDEX) announcement of opportunity, will use X-ray spectroscopy to detect 

previously unaccounted quantities of normal matter in the Universe. The Arcus 

mission design uses 4:1 lunar resonance to provide a stable orbit for visibility of 

widely-dispersed targets, in a low background radiation environment, above the 

Van Allen belts for the minimum two-year science mission. Additional ad-

vantages of 4:1 resonance are long term stability without maintenance maneuvers, 

eclipses under 4.5 hours, perigee radius approximately 12 Re for data download, 

and streamlined operational cadence with approximately 1 week orbit period. 

INTRODUCTION 

The Arcus mission, currently in “Step 2” proposal phase for NASA’s 2016 Astrophysics Me-

dium Explorer (MIDEX) announcement of opportunity, will be a two-year exploration using X-ray 

spectroscopy to detect previously unaccounted quantities of the normal matter content of the Uni-

verse.  Arcus will study stars, galaxies, and clusters of galaxies, and will characterize the interac-

tions between these objects.  The Arcus mission design must provide a stable orbit for visibility of 

these widely-dispersed targets, as well as provide a low background radiation environment above 

the Van Allen belts (VAB) for the minimum two-year science mission.  Other primary mission 

design drivers support simplifying the spacecraft and mission operations.   

Figure 1 shows the Arcus transfer trajectory and lunar-resonant P/4 (1/4 Lunar Orbit Period) 

orbit for the two-year duration of the nominal science phase.  On the left, the trajectory is shown in 

Earth-Inertial reference frame.  On the right, the trajectory is displayed in the Earth-Moon rotating 

frame with the Earth-Moon line being fixed, and the Moon at the top of the frame.  Plotting the 

trajectory in the Earth-Moon rotating frame provides graphical insight into the P/4 resonance.  
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Figure 1.  Arcus phasing loop transfer and 4:1 resonant mission orbit for 2-year science phase 

The trajectory design trades and considerations resulted in a Design Reference Mission (DRM) 

that uses a stable High Earth Orbit (HEO) for the science phase.  A properly oriented science orbit 

resonant with the Moon’s orbit keeps the apogee away from the Moon, stabilizing the orbit from 

lunar perturbations while also reducing the propellant needed for orbit maintenance during science 

operations1.  The 4:1 lunar resonance pattern (or “P/4”) was chosen for Arcus.  A lunar gravity 

assist during the transfer to HEO reduces the delta-v costs, as demonstrated recently by the TESS 

mission8,9.  A series of phasing loops are used after launch to target the lunar gravity assist.  The 

collection of mission design drivers, along with the Arcus DRM parameters are listed in Table 1.   

 
Table 1: Arcus Mission Design Drivers and DRM Values 

Mission Design Drivers Limit Arcus DRM Values 

Radiation exposure clear of VAB Altitude >60,000 km Altitude >70,800 km 

P/4 resonance, (Phase A trade) Orbit period 6.8 days Orbit period 6.8 days 

∆v budget 373 m/s (3σ low performance) 373 m/s 294 m/s 

Max maneuver size to avoid >1hr burns 175 m/s 130 m/s 

Max eclipse duration, thermal management 4.5 hrs 3.1 hrs 

Minimum Sun angle on thrusters > 20 deg (est.) 157 deg 

Maximum radius distance from Earth 110 Re 93.4 Re 

Science orbit equatorial inclination near 

DSN latitudes (35 – 40 deg) 

< 40 deg 35 deg 

Post-mission Geostationary belt keep-out Altitude >35,986 km Altitude >66,438 km 

 

TRAJECTORY AND ORBIT DESIGN 

Arcus Trajectory Overview 

Two portions of the Arcus trajectory are 3-body solutions in the Earth-Moon system and both 

parts of the trajectory design derive direct benefit from similar mission experience in phasing loops 
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for transfer to the Moon and resonant orbits in long term phase with the Moon’s motion1,4,6,7,8,9,10.  

The Arcus baseline trajectory design approach begins with drivers on the final orbit, then estab-

lishes intermediate and initial conditions for the ultimate targets. 

A cislunar phasing loop trajectory design is advantageous for absorbing launch dispersions and 

minimizing trajectory correction delta-v.  This technique is used to target the lunar swingby and 

has been used operationally by several other NASA missions2,3,4. Additionally, the use of a lunar 

gravity assist will add energy to the geocentric orbit, raising perigee to science altitude of nominally 

72,000 km, while also effecting an 11 deg plane change.   

Figure 2 is an illustration which describes this trajectory as a timeline.  The timeline begins at 

launch on the left and walks through the phasing loops with locations of the lunar swingby phasing 

maneuvers (SPMs), the lunar encounter, the resonance phasing maneuvers, and correction maneu-

vers.  The timeline from launch until science orbit insertion is approximately 64 days.  The 4:1 

science orbit will have an average 6.8-day orbit period and eccentricity of about 0.49.    

 

 

Figure 2: Arcus mission profile from launch to the 4:1 resonant science orbit 

 

Arcus P/4 Lunar Resonant Science Orbit 

The Arcus science orbit benefits from previous work performed in the field of the Earth-Moon 
resonance environment1,3,6-11,13.  Figure 3 illustrates early consideration of resonance patterns 
for Arcus and serves as a comparison with widely studied, recent missions, TESS and IBEX. 
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Figure 3.  Summary of Arcus trade studies for science orbit, referencing heritage mission concepts. 

In addition to familiar ratios of P/2, P/3, and P/4, preliminary studies included other relation-

ships.  Figure 4 presents an example of numerous available design alternatives, in this case 7/2, (or 

P/3.5) intermediate between P/4 and P/3.   

 

 

Figure 4.  7/2 or P/3.5 resonance 

pattern 

 

Figure 5.  100 year resonance in inertial and rotating refer-

ence frames
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Lunar Resonant Orbit Stability and Eclipses 

The Arcus science orbit—with a lunar resonant P/4 orbit period—benefits from previous work 

performed in the field of the Earth-Moon resonance environment which investigated a variety of 

resonance patterns1,5,6,7,8,9,10,11. These studies with eccentricities higher than for Arcus have shown 

that although resonant orbits in cislunar space are mathematically unstable, they can be designed 

so that the divergence from the initial orbit is so slow that they exhibit a practical stability for 

several decades. In this sense, a major advantage of the Arcus science orbit is that the Lunar per-

turbations on the orbit are predictable, and the closest points to the Moon are maintained at the 

maximum possible distance for the size of the orbit. The enables prediction of the long-term trends 

of perigee altitude, the line of asides, and other parameters including eclipse predictions and com-

munications scheduling. The IBEX mission spent its first two years in a non-resonant cislunar orbit, 

and the orbit could only be predicted a few years into the future. But after transferring into a similar 

shaped lunar resonant orbit for its extended mission, the IBEX orbit is stable for more than 20 years 

under perturbation one thousand times greater than the orbit determination errors. We expect the 

same or better performance for the Arcus science orbit because of its lower radius of apogee radius 

than IBEX, and so the lunar perturbations will be reduced. Because Monte Carlo simulations were 

successful for the IBEX and TESS missions, both of which are more affected by Lunar and Solar 

gravity perturbations than Arcus will be, we are confident that the Monte Carlo techniques we’ve 

performed, and will perform in preparation for launch, will yield accurate predictions to support 

mission analysis.  

Arcus trade studies on the science orbit considered the challenges faced by heritage missions in 

shadow duration and one of the advantages of Arcus’ P/4 science orbit is that the maximum hypo-

thetical Earth shadow of 4.5 hours is within tolerance for the spacecraft.  With P/4, the Arcus mis-

sion design enjoys less difficult conditions with respect to perturbations and eclipses than missions 

with P/2 resonance.  

Once established, because the science orbit is resonant with the Moon, it does not require 

maintenance or deorbit burns.  Arcus’ stable science orbit stays above the geostationary belt (GEO) 

and the VAB post-mission.  Figure 5 illustrates the 100-year propagated science orbit in red, with 

the Moon’s orbit in white, the geostationary (GEO) belt in orange, and the outer VAB in green.     

 

Arcus Transfer Trajectory 

The first perigee after the lunar swingby, the Post Lunar Encounter Perigee (PLEP), establishes 

the proper orientation of the lunar resonant orbit with respect to the Moon at apogee.  Lunar 

swingby parameters target both altitude and orientation relative to the Moon’s position at the sat-

ellites perigee pass.  The inclination of the mission orbit is not an important science driver and is 

an effective control for setting up the first perigee.   

Figure 6a shows three variations on the same day, with the resulting science orbits similar in 

altitude and orientation within their orbit planes (but with different inclinations).  Case A has a 

small plane change at the Moon:  the orbit plane of the resulting science orbit is near the Earth’s 

equator (center, in green); Case A places the incoming hyperbolic trajectory in the Moon-centered 

reference frame near the descending node (DN) and has high inclination relative to the Moon’s 

orbit plane (in white), which can create disruptive effects on the Arcus orbit’s long term stability.  

Case B places the incoming asymptote for approach near the ascending node (AN) and has a sig-

nificant plane change during the swingby, creating a science orbit at low relative inclination with 

respect to the Moon’s orbit.  The equatorial orbit is moderate and supports DSN contacts, appearing 
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in Figure 6 as the angle between case B and the interior GEO ring in green.  Solutions near the 

ecliptic plane may have the potential for more frequent eclipses, however with the apogee altitude 

lower than P/3 or P/2 orbits3,8, the maximum shadow duration is manageable.  Case C, with the 

largest inclination change at swingby, is a viable option in terms of orbital mechanics, but results 

in science orbits with high equatorial inclination, which can decrease DSN contact time, and high 

relative inclination with respect to the Moon’s plane, where gravitational perturbations appear to 

disrupt long term stability. 

Figure 6b and c illustrate the targeting relationship between inclination and phase angle:  some 

target phase angles are more easily achieved by relaxing the ecliptic inclination constriant.  Arcus 

designs use relatively low ecliptic inclination, 12⁰ ± 4⁰, and adjust the energy of the post-swingby 

transfer to set the orientation of the PLEP.  Figure 6b is an example from an analysis approach that 

allows inclination to vary for the purpose of establishing the desired alignment while maintaining 

approximately the same post-swingby transfer time to the first perigee.  Figure 6c illustrates 4 ex-

ample alignments of the Arcus science orbit and identifies the “Phase angle” between the Moon 

and the first perigee after the Lunar Gravity Assist (LGrA) swingby for solutions in the same orbit 

plane. 

 

 

Figure 6.  Associated target parameters of ecliptic inclination, altitude, and phase angle 

 

Based on evaluation of heritage mission concepts using phasing loops and lunar gravity assist 

to enter lunar resonant orbit, Kronos6 and TESS8, Arcus compared two main approaches for the 

post-swingby transfer to the science orbit:  1 maneuver vs 2 maneuvers.  A single PAM suits the 

heritage missions with P/2 resonance and lower delta-v requirements.  However, Arcus draws ad-

vantages from a two-step approach to establishing the science orbit. 

Arcus post-swingby transfer orbits include two maneuvers, Resonance Phasing Maneuver 

(RPM) and Period Adjust Maneuver (PAM), for apogee lowering and phasing to ¼ of the Moon’s 

period, and an Orbit Correction Maneuver (OCM) for correcting dispersions on the large, apogee-

lowering burns.  Figure 7 compares the two options with the same launch and phasing loops and 

with the same science orbit result.  Additional factors in the number of burn comparison are 12 – 

15 extra days in the transfer phase between launch and the arrival in science orbit, and a minor 

increase in delta-v for greater flexibility of trajectory design. Another benefit of two burns is re-
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ducing maximum maneuver size to below 175 m/s, which allows the spacecraft propulsion subsys-

tem to stay within the qualified max burn duration with 3 thrusters instead of needing 4 thrusters 

to achieve P/4 apogee altitude with a single PAM.  The inclusion of an intermediate orbit in the 

transfer phase has the further advantage of opening up a trade space for targeting a different “lobe” 

of the resonance pattern at lower delta-v, and accommodating a make-up burn on the next orbit for 

the missed RPM off-nominal case. 

Setting up the alignment of the science orbit in two steps allows substantial flexibility in the 

Arcus trajectory design process. For example, Figure 8 reaches the same resonance orientation for 

the mission orbit from a wide range of conditions on the intermediate orbit preceding the period 

adjustment at PAM. Variability in the post-swingby trajectory converges to the same science orbit. 

 

 

Figure 7. Comparison of Arcus 2-burn (left) 

and 1-burn (right) transfers to the same P/4 

science orbit, in inertial reference frame (top) 

and rotating reference frame (bottom) 

 

Figure 8.  Figure M.14.9-44 Two burns in 

post-swingby transfer offer great flexibility in 

trajectory targeting.   

 

 

Figure 9.  Figure M.14.9-45 Arcus trajectory de-

sign achieves the desired science orbit with broad 

flexibility of targeting conditions in the transfer 

phases. 
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Arcus’ two-burn transfer approach easily accommodates dispersions and variations, freeing the 

design process from stringent targeting requirements to achieve successful mission orbits.  Figure 

8 illustrates the independence of final orbit parameters from the swingby targeting, including Monte 

Carlo results of 1000 runs and analytical solutions for launch dates through a complete lunar cycle.  

In Phase A analyses, P/4 resonant mission orbit designs meeting all requirements vary in perigee 

altitude from 70,000 to above 80,000 km and in ecliptic inclination from about 8 to 13 deg in trade 

studies and fluctuate across approx. the same ranges during the science phase. 

 
The flexibility and resilience of the Arcus trajectory offer robust recovery options to missed 

maneuvers, with alternatives and variations available as viable science orbits. 

 

The design method for the Arcus trajectory is straightforward use of STK/Astrogator’s targeting 

function using a multivariate predictor-corrector algorithm.  Table 2 lists the steps in targeting the 

Arcus P/4 lunar resonant orbit.  Phasing loop design to target lunar encounter borrows directly from 

the LADEE trajectory design4.  McGiffin, Mathews, and Cooley used a similar approach for the 

Kronos P/2 resonant solution6. 

 
Table 2.  Outline of steps in targeting Arcus’ phasing loop transfer to lunar gravity assist and P/4 

resonant science orbit 

Step 
Trajectory 

Phase 
Targeting  

Event 
Purpose 

Fixed  
Parameters 

Variables Goals / Outcome 

1 Launch Initial condi-
tions 

  Latitude of launch 
site 

 Launch azimuth = 
90⁰ 

 C3= -2.75 km2/s2 

Approx. 
launch epoch 

Post burnout injection 
state 

2 Post-launch Orbit plane Phasing loops in-
tersect Moon’s 
orbit plane 

 Fixed parameters in 
Step 1 

 Equatorial inclina-
tion of launch site 
latitude 

Coast time Angle between the line of 
apsides of the first phas-
ing loop and the Moon’s 
orbit plane = 0⁰ 

3 First  
Phasing  
Loop 

First loop 
orientation 
relative to 
Moon to lev-
erage 3rd 
body pertur-
bations 

Align Phasing 
loops with 
Moon’s Right As-
cension 

 Fixed parameters in 
Step 2 

 Phasing Loop orbit 
plane solved in Step 
2 

 Launch 
epoch 

 Coast time 

Angle between the apo-
gee vector of the first 
phasing loop and the 
Moon’s position at Arcus 
apogee 1 between 10 and 
70⁰ 

4 Phasing 
Loops 

Lunar en-
counter 

Coarse targeting 
of lunar swingby 

 Fixed parameters in 
Step 3 

 Apogee-Moon angle 
solved in Step 3 

 Launch 
epoch 

 Coast time 

 SPM1 ∆v 

 SPM2 ∆v 

 Approx. periselene alti-
tude = 10,000 km 

 Approx. B-theta be-
tween -20 and 20⁰, de-
pending on AN vs DN 
swingby 

 Time of flight from per-
igee to periselene 3 – 4 
days 
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5 Post-
swingby 
Transfer 

Science orbit 
perigee, in-
clination, 
and orienta-
tion 

Establish science 
orbit energy and 
inclination 

 Fixed parameters in 
Step 4 

 Time of flight solved 
in Step 4 

 Launch 
epoch 

 Coast time 

 SPM1 ∆v 

 SPM2 ∆v 

 Perigee alt ≈72,000 km 

 Ecliptic inclination ≈ 
12⁰ 

 Per-Earth-Moon phas-
ing angle between per-
igee vector and 
Moon’s position at 
PLEP between 10 and 
45⁰ 

6 RPM Intermediate 
orbit period 

Establish reso-
nance phasing 

PLEP conditions solved 
in Step 5 

RPM magni-
tude 

Per-Earth-Moon phasing 
angle between next peri-
gee vector and Moon’s 
position at next Arcus per-
igee = 175⁰ 

7 PAM Resonance 
orbit period 

Set P/4 orbit pe-
riod 

Perigee conditions 
solved in Step 6 

PAM magni-
tude 

Science orbit period of 
6.76 – 6.84 days 

 

Cislunar Trajectory Maneuvers and the Delta-v Budget 

The sequence of maneuvers that comprise the transfer trajectory are shown in Figure 2. Apogee 

Maneuver 1 (AM1) is an engineering burn, not critical for trajectory execution.  Swingby Phasing 

Maneuvers SPM1 and SPM2 are deterministic trajectory maneuvers based on the baseline insertion 

obit, launch day and launch dispersions.  After SPM1 execution, SPM2 is retargeted to correct any 

SPM1 dispersions.  SPM3 is an optional maneuver that can be used to correct performance errors 

in the SPM2 maneuver.  An out of plane maneuver (OPM) is budgeted to correct RAAN errors and 

to allow for wider launch windows. This plane correction is placed off the line of apsides and is 

used to rotate the RAAN of the pre-swingby phasing loops. The post-swingby transfer trajectory 

includes two deterministic maneuvers, RPM and PAM, for apogee lowering and phasing to the 4:1 

resonant orbit. The final OCM maneuver is statistical, and will be used for precise targeting of the 

final science orbit parameters. 

The process for developing the delta-v budget models a continuum of outcomes with discrete 

allocations.  The temptation to carry a large delta-v budget for flexibility in all circumstances can 

result in oversizing spacecraft components and even outgrowing the LV.  Some allocations map to 

individual propulsive events; others are calculated estimates with noted distinctions on what they 

include and exclude. 

Arcus budgets 373 m/s for baseline trajectory designs throughout the lunar cycle, 30 minute 

launch windows, launch dispersions, maneuver performance dispersions, finite burn losses, pro-

pulsion subsystem calibration, position knowledge error, and orbit maintenance (zero) and deorbit 

(zero).  The two portions of the transfer trajectory, before and after the swingby, each use phasing 

to the Moon’s motion.  Each set, first the SPMs (plus OPM) and later the RPM & PAM, include 

flexible designs for the baseline and corrections to adjust the maneuvers in light of preceding op-

erational conditions.  The delta-v budget uses allocations for sets of nominal maneuvers:  50 m/s 

for phasing loops and 260 m/s for the large, post-swingby maneuvers (Table 3, Items 3 & 7). 

A variety of methods and sources inform the Arcus delta-v budget in Table 3, including heritage 

comparisons, parametric studies, corner cases (“hyper-cube” analyses), and Monte Carlo analyses.  

Allocations target a balance of conservatism for risk mitigation with effectiveness in supporting 
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spacecraft mass margins and propellant loading and allow groupings of events that are not inde-

pendent.  The columns in Table 3 give the Arcus deterministic delta-v budget for the baseline case, 

estimated or statistical corrections, and budget allocations. 

 

Table 3: The Arcus delta-v budget for deterministic and statistical maneuvers is 373 m/s  

Mission Event 

Design Refer-

ence Mission 

(m/s) 

Worst 

Analysis 

Case (m/s) 

Delta-V 

Allocation 

(m/s) 

Item 

Part 1 – Phasing Loops 

Launch Window Extension  <10 10.0 1 

Launch Energy Dispersions  16.0 20.0 
2 

Launch Plane Dispersions  13.4 10.0 

Swingby Phasing Maneuver 1 (SPM1) 18.0   

3 
Swingby Phasing Maneuver 2 (SPM2) 19.7 

Swingby Phasing Maneuver 3 (SPM3) 0.0 

Sum of Phasing Loop Burns 37.7 47.1 50.0 

Translunar TCM  4.3 10.0 4 

A1 Engineering Burn 2.0 2.0 2.0 5 

Total for Phasing Loops 39.7 92.8 102.0 6 

Part 2 – Transfer Orbit 

Resonance Phasing Maneuver (RPM) 130.4   

7 Period Adjust Maneuver (PAM) 125.3   

Sum of Transfer Orbit Burns 255.7 256.0 260.0 

Orbit Correction Maneuver (OCM)  8.9 10.0 8 

Losses for finite burn, cosine, position knowledge error  1.0 1.0 9 

Total for Transfer Phase 255.7 265.9 271.0 10 

Part 3 – Science Orbit 

Orbit Maintenance 0.0 0.0 0.0 

11 Decommissioning 0.0 0.0 0.0 

Total for Science Orbit 0.0 0.0 0.0 

Grand Total 295.4 358.7 373.0 12 

 

The allocation of 10 m/s for launch window extension in Item 1 reflects LADEE heritage.  Arcus 

analyses have found that offsets to the launch time from T-15 minutes to T+15 minutes are afford-

able within the nominal delta-v allocation.  Longer launch windows may be feasible under the 10 

m/s allocation. 

Figure 10 shows the preliminary analysis of launch energy dispersions and illustrates the resil-

ient nature of the phasing loop approach.  Discrete cases for launch energy values in km2/s2 of -

3.25, -3.0, 02.75, -2.5, and -2.25 all converge closely at lunar swingby due to retargeting.  Prelim-

inary assessment of trajectory adjustments for launch energy dispersions with a hypercube analysis 

show corner cases adding as much as 16 m/s to the nominal case, while the estimates for launch 

plane dispersion alone and 30 m/s for combined launch dispersions (Item 2) used the Monte Carlo 

approach.  Figure 11a, accounts for Items 2 – 5 in Table 3, so the total compares to Item 6. 
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Figure 10. Launch energy dispersions in phasing loops 

 

Because launch and maneuver outcomes appear separately, the “Sum of Phasing Loops” subto-

tal (Item 3) represents nominal cases of SPMs only, with the first column for the baseline case, the 

middle column for the highest value over a representative lunar cycle, and the right hand column 

for the budget allocation to cover all identified nominal phasing loop burns.  In off-nominal out-

comes (still within design dispersions), maneuver magnitudes within coordinated groups trend in 

opposite directions (Figure 11a and b) so there is no improvement in fidelity by carrying allocations 

on individual maneuvers. 

Performance variations of maneuvers introduce “errors” to the delta-v budget not considered 

operational contingencies.  The phasing loop approach allows corrections of perigee burns to occur 

at perigee for 1:1 energy cost, so there is no line item for SPM corrections in the delta-v budget.  

The exception to the perigee corrections is the TCM. 

The 10 m/s allocation for translunar TCM in Item 4 reflects the rapid loss of effectiveness of 

corrections as their placement shifts further and further from perigee.  The baseline design leaves 

perigee 3 free for corrections at 1:1 efficiency.  Ideally SPM3 will serve as the correction for SPM2 

and achieve final targeting for the lunar swingby.  However the TCM allocation covers alternate 

phasing loop cases where the larger of the SPMs could occur at perigee 3 and takes 20 m/s as a 

representative value for the larger of two pre-swinby phasing burns.  The rationale for the 10 m/s 

allocation is that a 5% error on a 20 m/s burn would be magnified by about an order of magnitude 

when applied after 24 hours:  5% of 20 m/s x 10 = 10 m/s. 

An example case with a large SPM3 would be off-nominal operations where SPM1 was missed.  

The flexibility of the phasing loop approach to lunar transfer trajectories is such that it may be 

possible to recover with SPM2 and SPM3.  It is also possible to design nominal trajectories which 

utilize SPM3, however the combination of SPM1 and SPM2 for nominal use offers the advantage 

of keeping SPM3 small or zero and the likelihood of waiving TCM. 

The engineering burn at apogee 1 in Item 5 serves as in flight test of the propulsion subsystem 

and begins engine calibration.  Final calibration requires a complete orbit. 

Monte Carlo analyses modeled the maneuver dispersions included in Table 4.  Engine calibra-

tion is expected to complete after the first phasing loop, however for conservatism the delta-v 

budget assumes 5% magnitude error throughout. The Monte Carlo method used first introduces 

errors in each of the nominal maneuvers and propagates the state forward to the next maneuver, 
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which is then retargeted (based on the errors in the previous maneuver) Therefore, the perturbations 

are handled, as they would be in actual operations, by recomputing a new solution after each of the 

maneuvers and adding perturbations to the newly computed maneuver to simulate again the non-

perfect maneuver execution.     

 

Table 4.  Dispersion inputs to statistical analyses 

Maneuver type (3-σ) ΔV uncertainty  (3-σ) pointing uncertainty 

Launch TLI 0.5 km2/s2 (C3 energy) 0.1 deg 

Uncalibrated Arcus prop. system 5% of nominal solution 5 deg 

Calibrated Arcus prop. system 2% of nominal solution 5 deg 

 

The results of 1000 cases are shown in Figure 11 a), b), and c). Figure a) shows of the impact 

of launch vehicle dispersions on phasing loop delta-v.  Differences in the initial C3 cause exchanges 

between SPM1 and SPM2 as the phasing loop timing adjusts for larger insertion orbits. Initially 

(with lower insertion C3 values) total phasing loop delta-v decreases with increasing C3, but even-

tually SPM1 values become negative as this maneuver must take out energy from high insertion 

loops that must be put back in by SPM2. This can be seen at the point where the delta-v total starts 

to increase. Plane corrections are related to RAAN errors at insertion, and are a function of higher 

insertion C3. 

 

 

Figure 11.  Statistical calculation of maneuver magnitudes: a) phasing loops, b) post-swingby trans-

fer, c) total 

The results in Figure 11a) show that the Arcus phasing loop delta-v needed is well within 92 

m/s in Item 6 (launch window extension, controlled by the OPM, is not included in these results so 

the total allocation reaches 102 m/s).  Post-swingby maneuvers in Figure 11 b) are accommodated 

in the 270 m/s allocated for that portion of the trajectory (Items 7 & 8).  While the total delta-v to 

achieve the science orbit is not a direct function of the launch C3, the RPM and PAM maneuvers 

play off each other as the timing of the entry to this phase changes with launch C3.   

Monte Carlo analyses offer robustness in evaluating potential variations and mitigate “worst-

upon-worst” case over-conservatism.  OCM sizing in Item 8 is an example where insight into delta-

v consumption for individual events is available with the “hypercube” method.  Table 5 presents 

analysis results where the Arcus design reference case has conservative maneuver performance 
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variations of 5% in the RPM and also 5% variation in the PAM.  The analysis approach for esti-

mating this allocation applies the 5% overburn or underburn dispersion to the RPM and retargets 

the PAM, then applies 5% overburn or underburn to the new PAM, then corrects one orbit later 

with the OCM.  The final column compares the retargeted sum of delta-v against the nominal allo-

cation for RPM and PAM, to enable the analysis to inform the allocation for the OCM line item.  

For the post-swingby maneuvers, Resonance Phasing Maneuver (RPM) and Period Adjust Maneu-

ver (PAM), conservative maneuver errors of ±5% drove the final Science OCM dv allocation of 10 

m/s.  Monte Carlo results in Figure 11b) confirm that 10 m/s is a comfortable allocation for the 

science orbit correction. 

 

Table 5.  Analysis corner cases for Orbit Correction Maneuver (OCM) 

Error Case Nominal 

RPM dv 

(m/s) 

5% RPM 

Error 

(m/s) 

Retargeted 

PAM dv 

(m/s) 

5% PAM 

Error 

(m/s) 

OCM 

dv* 

(m/s) 

Total Post-

swingby dv 

(m/s) 

Vs. 260 m/s 

Nominal      

Allocation 

(m/s) 

Nominal 130.4 0 125.3 0 0 255.7 -4.3 

+5%, +5% 130.4 6.52 119.4 5.97 |-6.58| 268.9 8.9 

+5%, -5% 130.4 6.52 119.4 -5.97 6.11 256.5 -3.5 

-5%, +5% 130.4 -6.52 131.0 6.55 |-6.27| 267.1 7.1 

-5%, -5% 130.4 -6.52 131.0 -6.55 7.52 256.4 -3.6 

* Positive delta-v values for nominal anti-velocity direction. 

 

The Arcus trajectory design assumes accurate knowledge of the spacecraft position at maneuver 

execution; results from heritage missions indicate that position knowledge will place maneuver 

execution within one minute of orbit perigee, which is within even the shortest nominal maneuver 

duration.  Preliminary analysis of cosine and finite burn losses are well under 1.0 m/s in Item 9. 

 

Item 10 subtotals are supported by Monte Carlo results in Figure 11c) and the worst case end-

to-end delta-v (358.7 m/sec) allows contingency against the total 373 m/s budget. 

Launch Analyses 

The launch vehicle has not yet been selected for Arcus, however the mission is currently planned 

to launch from either Wallops Flight Facility (WFF) or Kennedy Space Center (KSC).  Launch 

opportunities occur on most days of the lunar cycle, with launch windows of at least 30 minutes.  

The Arcus launch parameters are summarized in Table 6. 

 

Table 6: Arcus Baseline Launch Parameters 

Launch Date September 7, 2023 

Launch Site WFF or KSC 

Insertion C3 -2.75 km2/s2 

Injection Argument of Perigee 300 degrees (after 48-minute coast) 

Launch Opportunities 24-26 days/month 

Launch Window 30 minutes 
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Preliminary analysis addressed a sample lunar cycle in the calendar month of September, 2023 

and found viable solutions on all but 3 launch days.  Because of the regular pattern of the Moon’s 

motion, it is valid to assume that all lunar months will have approximately similar opportunities.  

Figure 12 shows successful launch dates in the preliminary survey from 7 Sept to 5 Oct 2023.  Gaps 

show missing days and overlaps due to variations in the alignment of the phasing loops to the 

Moon’s motion. 

 

 

Figure 12.  Preliminary analysis of launches in a lunar month 

 

For Phase A, most launch dates in the analysis have a single trajectory case.  Follow-on trade 

studies will compare launch dates across ascent profiles and design options, such as Fixed AOP, 

Short coast, and Long coast.  Rationale for investigating multiple options per launch day are miti-

gation of unfavorable eclipse geometry, flexibility in launch time of day, and simple robustness in 

the metric of number of launch opportunities. 

The coast times before the injection maneuver by the LV upper stage vary as the orbit geometry 

trends across the lunar cycle.  Figure 12 shows coast times and trends in deterministic delta-v for 

the preliminary set of launch dates. 

 

Eclipses are a major design driver on launch dates.  Most solutions with strong similarities to 

the baseline case have the natural limit on the duration of Earth shadow in the science orbit of 4.5 

hrs.  (With variations in the apogee altitude, it is possible to exceed the 4.5 hr limit slightly.)  Short 

coast and long coast opportunities on the same day don’t typically create significantly different 

trajectory solutions, so the resulting science orbits tend to have similar eclipse characteristics since 

they transit largely the same areas of inertial space in the same timeframe as one another.  
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Figure 13.  Preliminary Eclipse Analysis for Launches in One Lunar Cycle 

Other than changing the target inclination, some fine tuning is possible for slight decreases in 

the max eclipse duration, for example to meet the max duration requirement, but the differences 

are generally less than 0.5 hr or shifting the occurrence to the next orbit.  Parameters that can vary 

the design include target science perigee altitude, inclination, and slight modifications of the orien-

tation of the orbit’s line of apsides.  The design limit of 4.5 hour eclipse does occur for launches 

during a portion of the lunar cycle. 

 

 

Figure 14.  Example Short- and Long-coast solutions on 28 Sept 2023 

 

Eclipses during phasing loops can be much longer than the max limit due to the high eccentricity 

and resulting slow velocity.  Figure 13 shows examples on Sept 28 – 30 of eclipses far exceeding 

the spacecraft tolerance.  Because alternate options for the ascent result in very different phasing 

loops, it is possible in some cases to avoid eliminating launch days by using a different launch 

profile (e.g. long coast vs short coast).  Figure 14 illustrates an example same-day alternatives. 

GROUND SEGMENT DESIGN 

The Arcus ground segment includes NASA’s Deep Space Network (DSN), NASA’s Tracking 

Data Relay Space System (TDRSS), NASA Ames’ Multi-Mission Operations Center (MMOC), 

and a Science Operations Center (SOC).  SN will be used throughout the mission for tracking, 

telemetry, and commanding (TT&C), from post-launch through all of the maneuver operations, and 

routinely throughout the science mission operations.  TDRSS will only be used for monitoring 
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maneuvers if the DSN is not in-view during the critical maneuvers.  The MMOC functions include 

spacecraft command and control, flight dynamics, activity planning and scheduling, verification, 

and engineering tools.  The SOC is located at Smithsonian Astrophysical Observatory (SAO), with 

science data archived at NASA’s High Energy Astrophysics Science Archive Research Center 

(HEASARC). 

Ground Network & Tracking Design 

The ground station network design baselined throughout the mission is NASA’s DSN. The DSN 

ground network includes the 34-meter antennas at Goldstone, Canberra, and Madrid.  The DSN 

will perform two-way coherent Doppler and Sequential Range tracking with Arcus.   

The current Arcus tracking plan is for three DSN tracking contacts per 6.8-day orbit for orbit 

determination.  These tracking contacts are approximately located as follows: one ascending out of 

perigee, one at/near apogee, and one on the descending side from apogee towards perigee.  Addi-

tionally, a fourth DSN contact (not needed for orbit determination) will be planned for about five 

hours during each perigee for science data downloads.  Table 7 breaks-down the ground station 

scheduling design by mission phase: 

 

Table 7: Arcus Design for Ground Station Supports by Mission Phase 

Phase Duration Ground Contact 

Schedule 

Key Events Additional Event 

Coverage 

S/C Activation & 
Checkout 

2 days TT&C (6 hr) each day 
Initial Acquisition 2 hr (SN), 12 hr (DSN) 

Spacecraft Acquisition 6 hr 

Phasing Loops 26 days 

Pre-SPM2:  
TT&C (1 hr) each day 

Post SPM2: 
TT&C (1 hr) each day 

AM1, OPM, TCM 7 hr each 

SPM1, SPM2, SPM3 8 hr each (SN/DSN) 

Orbit Insertion 36 days TT&C (1 hr) each day RPM, PAM, OCM 7 hr each 

Instrument Ac-
tivation & 
Checkout 

20 days 

One SDDL (7 hr) per orbit 

Three TT&C (1 hr each) 
evenly spaced per orbit 

Power On 7 hr 

Functional Test 7 hr 
Instrument Checkout (4 
days) 

7 hr per day 

Focal Plane Testing No additional 
Door Deployments 7 hr 

Instrument Com-
missioning 

34 days One SDDL (7 hr) per orbit 

Three TT&C (1 hr each) 
evenly spaced per orbit 

Optical Axis Determination 
Dispersion Determinations 
Effective Area Calibration 
Light Leak/Vignetting 

No additional 

Science 730 days One SDDL (7 hr) per orbit 

Three TT&C (1 hr each) 
evenly spaced per orbit 

Routine ops No additional 

Decommissioning 1 day  Passivation 7 hr 
SDDL:  Science Data Downlink.  TT&C:  Telemetry, Tracking, & Commanding.  DSN:  Deep Space Network.  SN: Space 
Network.  All contacts with DSN unless otherwise noted.   

 

The figure below is a plot of Arcus’s altitude over time in science phase, over about 9 orbits 

(green).  With exception of the first orbit, a simulated routine science phase tracking plan is shown 

(blue segments) with three tracking segments per orbit.  
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Figure 15: Arcus Tracking Schedule Design in Science Phase by Altitude 

Mission Design & Operational Tools 

For Arcus mission design and analysis our team used Analytical Graphics Inc.’s (AGI’s) Sys-

tems Tool Kit (STK) and Orbit Determination Tool Kit (ODTK) extensively. We used the 

STK/Astrogator module 12 for the entire end-to-end trajectory design because it has been used ex-

tensively for analysis and operations in cislunar, lunar resonant, deep space, and gravity assist mis-

sions 3,13,14,15,16.  We used ODTK similarly because it has been used it for cislunar analysis and 

operations, including operations for IBEX’s lunar resonant orbit13. During this mission design and 

analysis phase for Arcus we used ODTK to simulate tracking data and perform for orbit determi-

nation error analysis. We also used STK with ODTK to create tracking schedules, tables and 

graphs, and for visualizing ODTK results. 

For the repetitive parametric and Monte Carlo simulations, we automated STK using its COM 

Application Interface (API). We used the Python language using Jupyter Notebooks17 to loop 

through launch period cases, setting inputs in STK/Astrogator, commanding STK/Astrogator to 

propagate and re-target the trajectories, and then to pull data out into tables that we could analyze. 

Arcus mission operations will include the Flight Dynamics System (FDS), used on the NASA 

missions IBEX, LADEE18, CYGNSS, and TESS, as well as for the commercial SkySat constella-

tion19.  The FDS is provided by Applied Defense Solutions (ADS) and will be used by the flight 

dynamics team for trajectory and maneuver planning, orbit determination, and product generation.  

AGI’s STK and ODTK packages are components of this FDS. The FDS streamlines operations by 

pulling data from databases, setting parameters in STK and ODTK, running jobs, creating data 

products, and delivering the products. The FDS is designed to automatically run jobs according to 

a schedule, but also enables the orbit analyst to run things manually, and if needed, to interact with 

STK and ODTK directly. 

ORBIT DETERMINATION 

Arcus primarily carries prediction requirements. Predictions are only needed to support the op-

erational activities of maneuver planning and sending acquisition and scheduling products to the 

Deep Space Network (DSN). There are no accuracy requirements for science activity planning or 

for science data processing.  Definitive orbit knowledge is only necessary for maneuver reconstruc-

tion and general prediction trending.  The orbit determination approach reflects the goals to simplify 

mission operations.   
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The predicted orbit uncertainties for two orbits are shown in the following graphs.  The last 

tracking time is at apogee around January 15, 2024, however the filter process is run past the last 

tracking time by two orbits.  Meaning, the uncertainty at the time of the last tracking measurement 

is then propagated for two orbits. In the predicted position uncertainty, the in-track component 

uncertainty spikes largest near two perigees in the future (January 24, 2024).   This is normal to see 

for elliptical orbits with predictions through perigee.  We also graph predicted uncertainty in semi-

major axis and in true argument of latitude.  The uncertainty 2 weeks out (2 orbits) is still well 

within the half-power beam width of the DSN 34-m antennas for S-Band transmit and receive.  

 

 

Figure 16.  Filtered 3-Sigma Position Uncertainty, Definitive Span Followed by Predicted Span 

 

 

Figure 17.  Filtered 3-σ Uncertainty in True Argument of Latitude, Definitive and Predicted Spans 

We also show this same information modeled in 3-D in STK.  The time shown is around the pre-

dicted perigee on January 24, 2024.   The purple tick-marks along the orbit track are at 30-second 

intervals, indicating that the 3-sigma uncertainty in the time of perigee is less than 60 seconds.  

The 3-sigma covariance is shown in light blue, where the in-track direction is largest (around 60 

km 3-sigma).  The report data on the graphic in yellow displays the 1-sigma covariance displayed 

near the Jan 24, 2024 perigee.  This figure also shows the antenna cone angle from DSS34 during 

the Jan 24, 2024 perigee.  The uncertainty of Arcus’ predicted position (the predicted covariance 

shown in light blue) is entirely within the beam-width.  
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Figure 18.  Filtered 3-σ Semi-Major Axis Uncertainty, Definitive Span Followed by Predicted Span 

 

Figure 19: Predicted covariance with DSS34 antenna cone representation 

All of these results show that the tracking plan during science operations is sufficient for DSN 

scheduling and acquisition.  More analysis will follow to detail the tracking plan in the early mis-

sion phases for maneuver planning and maneuver recovery, as well as describe eclipse prediction 

uncertainties.  

The Arcus mission design includes a robust plan to meet and exceed the science mission objec-

tives and is also well-within margins imposed by design drivers.  The science orbit design and the 

orbit determination approach also reflect the desire for simplified long-term mission operations. 

CONCLUSION 

P/4 resonance with the Moon is an elegant, practical HEO for science missions such as Arcus 

using intermediate cis-lunar altitudes for data collection and lower altitudes at perigee for downlink.  

Lunar gravity assist offers affordable perigee raising to clear the Van Allen Belts.  The mission 

orbit requires no maintenance or decommissioning maneuvers, staying clear of GEO indefinitely. 
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