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Parallelizing software to execute on multi-core central processing units (CPUs) and 

graphics processing units (GPUs) can be challenging. For some fields outside of Computer 

Science, this transition comes with new issues. For example, memory limitations can require 

modifications to code not initially developed to run on GPUs.  

This work applies the Open Multi-Processing (OpenMP) and Open Accelerators 

(OpenACC) directive-based parallelization strategies on a Monte Carlo simulation approach 

for trajectory reconstruction enabling it to run on multi-core CPUs and GPUs. Large matrix 

operations are the most common use of GPUs, which are not present in this algorithm; 

however, the natural parallelism of independent trajectories in Monte Carlo simulations is 

exploited. Benchmarking data are presented comparing execution times of the software for 

single-thread CPUs, multi-thread CPUs with OpenMP, and multi-thread GPUs using 

OpenACC. These data were collected using nodes with Intel® Xeon® E5-2670 (Sandy Bridge) 

CPUs enhanced with NVIDIA® Tesla® K40 GPUs on the Pleiades Supercomputer cluster at 

the National Aeronautics and Space Administration (NASA) Ames Research Center (ARC) 

and a local Intel® Xeon Phi™ node at NASA Langley Research Center (LaRC). 

Nomenclature 

𝐴0, 𝐴1, 𝐴2, 𝐵0𝐵1 , 𝐵2  = predictor constants 

𝑎0, 𝑎1, 𝑎2, 𝑏−1, 𝑏0, 𝑏1, 𝑏2 = corrector constants 

Δ𝑡     = time step size 

𝑛     = time step number 

𝑦𝑛     = variable of interest at time step 𝑛 

�̇�𝑛     = derivative of the variable of interest at time step n 

I. Introduction 

RAJECTORY reconstruction is a process through which vehicle position, velocity, and orientation is determined 

post-flight. It is used to aid in the validation of pre-flight models and assist in identifying anomalies that may 

occur during flight. The fundamental approach to trajectory reconstruction uses the vehicle’s initial state (position, 

velocity, and orientation), and integrates the inertial measurement unit (IMU) data to determine the vehicle states 

throughout its flight. Lugo et al.1 developed a Monte Carlo based approach for trajectory reconstruction that 

incorporated the vehicle’s final state information and introduces statistics. This method decreases uncertainties in the 

reconstruction results, which improves model validations and post-flight analysis. However, this Monte Carlo 

approach requires the integration of several thousand trajectories. These calculations are time consuming when 

executed serially, but the execution time can be decreased by utilizing concurrent computation. 
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 The purpose of this work is to examine the use of parallel programming techniques on an algorithm that applies 

inertial navigation to trajectory reconstruction in a Monte Carlo dispersion process. The IMU errors and vehicle initial 

state conditions are distributed in a Monte Carlo sense using predetermined uncertainties. Therefore, each of the 

trajectories are independent of one another, enabling concurrent calculations using high performance computing 

(HPC) techniques and resources. This work utilizes HPC resources, such as multi-core central processing units (CPUs) 

and graphics processing units (GPUs), by implementing Open Multi-Processing (OpenMP) and Open Accelerators 

(OpenACC) directive-based parallel programming strategies. 

 An overview of the trajectory reconstruction software is presented in Section II. Section III provides specifications 

for the hardware that was used to collect benchmarking data. The parallel programming techniques used in this work, 

OpenMP and OpenACC, are discussed in Section IV. Compiler comparisons and execution times using OpenMP and 

OpenACC are listed in Section V. Benchmarking data are collected using resources on the National Aeronautics and 

Space Administration (NASA) Ames Research Center (ARC) Pleiades supercomputer cluster and a local node at 

NASA Langley Research Center (LaRC).  

II. Trajectory Reconstruction Software 

The software developed to conduct trajectory reconstruction is approximately 900 lines of C code. It begins by 

reading in parameter values from a data file, such as the radius and rotation rate for a given planet and the number of 

trajectories to be calculated. Then it reads the IMU data and the vehicle’s initial state conditions that will be dispersed 

amongst the trajectories. Next, a loop iterates through the total number of trajectories. Within this section, each 

trajectory is provided the same IMU data to be integrated but its own initial conditions. There are two main routines 

called in the integrator function: gravity and an acceleration transformation routine. The gravity model used is a 𝐽2 

model. The acceleration transformation routine receives acceleration data from the IMU, in the body coordinate frame, 

and it transforms the acceleration into the planet centered inertial frame. Once the first two time steps of the integration 

are calculated using the Euler method, the integration is completed in a large time loop using a numerical three-point 

predictor corrector scheme by Hamming2. The explicit method used for the predictor is defined by 

 

𝑦𝑛+1 = 𝐴0𝑦𝑛 + 𝐴1𝑦𝑛−1 + 𝐴2𝑦𝑛−2 + Δ𝑡(𝐵0�̇�𝑛 + 𝐵1�̇�𝑛−1 + 𝐵2�̇�𝑛−2) (1) 

 

where 𝑛 represents the current time step, Δ𝑡 is the time step size, �̇� is the derivative with respect to time of 𝑦,  

𝐵0 =
1

12
(23 + 5𝐴1 + 4𝐴2)

𝐵1 =
1

12
(−16 + 8𝐴1 + 16𝐴2)

𝐵2 =
1

12
(5 − 𝐴1 + 4𝐴2)

 (2) 

 

and 𝐴1 and 𝐴2 are arbitrary constants such that 𝐴0 = 1 − 𝐴1 − 𝐴2. In this work, 𝐴1 = −0.5 and 𝐴2 = 0.5. Once the 

predictor step is complete, each step is then updated by the corrector defined by 

 

𝑦𝑛+1 = 𝑎0𝑦𝑛 + 𝑎1𝑦𝑛−1 + 𝑎2𝑦𝑛−2 +
Δ𝑡

24
(𝑏−1�̇�𝑛+1 + 𝑏0�̇�𝑛 + 𝑏1�̇�𝑛−1 + 𝑏2�̇�𝑛−2) (3) 

 

where 

 
𝑏−1 = 9 − 𝑎1

𝑏0 = 19 + 13𝑎1 + 8𝑎2

𝑏1 = −5 + 13𝑎1 + 32𝑎2

𝑏2 = 1 − 𝑎1 + 82

 (4) 

 

and 𝑎1 and 𝑎2 are arbitrary constants satisfying 𝑎0 = 1 − 𝑎1 − 𝑎2. For this work, 𝑎1 = −0.5 and 𝑎2 = 0.5. Since each 

step of this integration is dependent on the previous three steps, this loop was not able to be parallelized. It is worth 

noting that this software originally executed with a MATLAB® wrapper that would determine which trajectories 

landed within some distance of the landing position. Statistical information would then be extracted from the 

remaining trajectories to create a set of normally distributed conditions for a new batch of trajectories to be 

reconstructed. A pseudo-code of the algorithm is provided in the appendix for reference. 
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III. Hardware Utilized 

Execution time of the trajectory reconstruction software was collected using hardware on the Pleiades 

Supercomputer cluster at NASA Ames Research Center and a local Intel® Xeon Phi™ (Knights Landing or KNL) 7210 

node at NASA LaRC. The nodes used on the Pleiades cluster have two Intel® Xeon® E5-2670 (Sandy Bridge) 

processors and one NVIDIA® Tesla® K40 GPU accelerator. Additional specifications on the hardware used for 

benchmarking are listed in Table 1. 

 

IV. Parallel Programming Techniques 

The Monte Carlo based trajectory reconstruction process requires the integration of thousands of independent 

trajectories, and this embarrassingly parallel problem structure was exploited to implement parallel programming 

techniques such as OpenMP and OpenACC. These two techniques share many similarities in how they can be 

implemented, but differ in the hardware types there are typically used to target. Both OpenMP and OpenACC require 

compiler directives that divide work among parallel threads according to the architecture being targeted. Due to these 

differences, the amount of time and effort needed to parallelize this software using OpenMP was significantly less 

compared to OpenACC. Additionally, a modification was made to the original algorithm due to the limited amount of 

memory available when executing on a GPU. While the original algorithm provided a method of outputting the vehicle 

state conditions at each time step, the alteration to the algorithm reduced this output to only save the initial and terminal 

vehicle state conditions. Since the three-step numerical predictor corrector was used, only the previous three time 

steps are stored as temporary variables at each integration step to complete necessary calculations. 

A. Open Multi-Processing 

OpenMP is the technique used to parallelize this application using the CPU and KNL hardware. In this case, each 

trajectory is calculated on a separate thread that reads the initial state conditions and IMU errors for a particular case 

from global arrays of data. To enable this parallelization, the #pragma omp parallel for directive was placed above 

the trajectory loop to direct the compiler to parallelize the proceeding for loop. OpenMP produces a significant 

performance boost in execution time with a minimal amount of change to the code and need for hardware 

understanding, provided all of the memory is managed correctly. In this algorithm, for example, each thread needs to 

store vehicle state conditions to its own data array as they are calculated for a given trajectory. Thus the private data 

clause is invoked to provide each thread with its own copy of the array. Keeping data private to certain processing 

elements is similar when programming for multi-core CPUs and GPUs.  

Additional work investigated the performance of this algorithm on KNL hardware. As shown in Table 1, the main 

differences between the CPU and KNL hardware is the total number of cores, the number of threads per core, and the 

Table 1. Hardware specifications3-7. 

 NASA Ames Pleiades Supercomputer NASA LaRC Node 

Hardware 
Intel® Xeon® E5-2670 

(Sandy Bridge) 
NVIDIA® Tesla® K40 

Intel® Xeon Phi™ 

7210 

Label Used in Paper CPU GPU KNL 

Release Year 2012 2013 2016 

Number of 

Processor Cores 
16 2880 64 

Threads Per Core 2 1 4 

Processor Base 

Speed [GHz] 
2.6 0.745 1.3 

Total L2 Cache 

[MB] 
40 1.536 32 

Memory Size [GB] 64 12 128 

Max Memory 

Bandwidth [GB/s] 
51.2 288 102 
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base processor speed for each core. A large advantage of the KNL is the high number of cores that it has while being 

able to execute the original algorithm without any modifications. The original algorithm stored vehicle state 

information at every time step, so the entire trajectory was written to disk. The difference in computation time between 

storing data at every time step and only storing the previous three steps was negligible. Furthermore, the main 

difference between the KNL OpenMP version and the CPU OpenMP version was an additional compilation flag (-

xmic-avx512) to target the Many Integrated Core (MIC) architecture of the KNL.  

Depending on the application and its workflow, the ideal number of threads to request varies8. For the CPU and 

KNL, an analysis was performed to determine the optimal thread count to use for this particular application under this 

particular configuration, and the results are shown in Figure 1. The curves identified in the legend are described as 

Hardware Type – Parallelization Strategy – Compiler. The number of threads used is set using an environment variable 

called OMP_NUM_THREADS. In the pgcc compiler version 17.1-0, used in this work, the maximum number of 

threads that can be used is limited to 64. The CPU and KNL have an optimal thread count equal to the total number 

of logical cores (number of cores × number of threads per core), which is 32 for the CPU and 256 for the KNL. The 

application execution speed increases linearly until the thread count used reaches the number of physical cores, then 

the additional speed up due to increasing the number of logical cores begins to plateau. The fastest execution time 

occurs when the thread count reaches the number of logical cores, but then begins to slow with increasing thread 

count. For the remainder of this work, all data reported for the CPU and KNL will reflect the use of 32 and 256 threads, 

respectively, as well as the modified algorithm saving off only the initial and terminal vehicle state conditions. 

 

 

Figure 1: The effect of the number of concurrent threads on execution time. For each thread count, the 

application was executed ten times and the average execution time is represented by each mark. The shaded 

regions display the spread in the results.  

B. Open Accelerators 

A significant part of this work involved adapting this software to execute on a GPU, which was completed 

primarily over a five day intensive hackathon at NASA LaRC hosted by Oak Ridge National Laboratory. When 

working with NVIDIA GPUs, there are two main avenues for writing applications: develop the software using the 

Compute Unified Device Architecture (CUDA) parallel computing platform, or modify the existing software by 

adding OpenACC directives. CUDA is a low-level programming model that offloads much of the responsibility of 

memory management and workload mapping onto the programmer, whereas OpenACC is a higher-level programming 

interface that requires significantly less interaction from the programmer. The work presented here utilizes OpenACC, 

because it can be implemented in a similar manner as OpenMP. For example, the private data clause is used identically 
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between OpenMP and OpenACC. The activation of GPU parallelism using OpenACC is done using the directive 

statement #pragma acc parallel loop.  

A common scientific computing application of GPUs incorporates large matrix operations9. The largest matrix 

operations for this reconstruction software involve 3 × 3 coordinate transformation matrices, which made the full 

utilization of GPUs a challenge. Memory management is another issue due to the limited memory on the GPU 

compared to the CPU, as seen in Table 1. Also, the time it takes to transfer data from the CPU (known as the host) to 

the GPU (known as the device), or vice versa, can slow the program execution speed. With this in mind, there are 

three main types of data that need to be considered: data transferred from the host to the device, data remaining on the 

device, and data transferred from the device to the host. In many cases, data are transferred from the host to the device 

and then back to the host once the computation is complete. For example, the data array that stores the vehicle state 

conditions is allocated on the host, transferred to the device to be written to, and then transferred back to the host. This 

array is approximately 15MB per trajectory since the state conditions of the vehicle are stored at every time step 

(approximately 2 × 105 total time steps), which requires large amounts of memory and limits the number of 

trajectories that can be calculated concurrently. Thus, an alteration was made to the algorithm to store only the initial 

and final states, which decreases the amount of memory needed for the vehicle state conditions array from 15MB to 

240B per trajectory and enabled the code to run on a GPU. The downside of modifying the algorithm is that all of the 

intermediate state conditions are not saved to disk, but for the present analysis and proof-of-concept, initial and final 

states were sufficient.  

Figure 2 shows the investigation into the optimal register* count per thread for this application. If each thread uses 

a small number of registers, then more threads can be active and execute code concurrently. However, if the memory 

needed to compute each trajectory reconstruction exceeds the amount of memory provided by the registers, then this 

leads to spills into local memory which results in a slowdown in program execution speed. The maximum number of 

registers to use per thread is set by the maxregcount compiler flag. For this particular application, with all variables 

defined as doubles (double precision), the optimal register count per thread is 255 (the maximum number per thread 

allowed by the hardware)7. With all variables defined as floats (single precision), the optimal register count per thread 

is 222. Though precision is lost when using floats instead of doubles, the relative error between the two cases is 

approximately 0.3% when comparing all vehicle final state condition variables except the z-component of the velocity. 

Since this value approaches zero, the absolute difference was examined and was equal to 0. 17 𝑚/𝑠. For the remainder 

of this work, all data reported for the GPU float and double variable definition versions will reflect the use of 222 and 

255 registers per thread, respectively, as well as the modified algorithm saving off only the initial and terminal vehicle 

state conditions. 

 

Figure 2: An experiment analyzing the effect the number of maximum registers provided at compile time has 

on execution time. For each register count, the application was run five times and the average execution time 

is represented by each mark. The spread for each average is not visible at this scale. 

                                                           
* In terms of speed, register files are the fastest type of memory on GPU devices10. 
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V. Results 

 Comparisons of single-threaded and multi-threaded codes are made using three compilers: gcc (version 6.2.0), the 

GNU compiler; icc (version 18.0.0), the Intel C compiler; and pgcc (version 17.1-0), the C compiler from The Portland 

Group (PGI). Each compiler has different flags to apply optimizations, target specific hardware, and to enable 

OpenMP or OpenACC. All flags used for each compiler are listed in Table 2. At the time of this report, the gcc 

compiler on the Pleiades Supercomputer did not support certain OpenACC features, and thus pgcc was the only 

compiler used for the OpenACC on GPUs study. Additionally, the version of pgcc used was unable to compile for the 

KNL hardware. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A comparison of execution times for each hardware type and compiler combination is presented in Figure 3, where 

the curves identified in the legend are described as Number of Logical Cores – Hardware Type – Parallelization 

Strategy – Compiler. The number of reconstructed trajectories is scaled from 1000 to 50000 to examine the effect 

workload has on execution time. For the OpenMP implementation on the CPU and KNL hardware, the execution time 

scales approximately linearly with the number of trajectories reconstructed. On the CPU hardware, the Intel and GNU 

compilers produced similar results, while the PGI compiler execution time is slightly longer. A large distinction in 

execution time is seen between the CPU and KNL hardware implementations using OpenMP. Additionally, the 

software executed faster when compiled with icc compared to gcc, on the KNL hardware, for each trajectory count.  

The GPU hardware performance varies depending on whether the variables used are defined as floats or doubles. 

The execution time when using all float variable definitions is approximately half of the all double variable definition 

version. However, for the CPU or KNL hardware the performance increase was less than 1% when using floats when 

compared to doubles. Additionally, the performance also varies depending on the number of trajectories that are being 

reconstructed. The execution time for the two GPU implementations remains approximately constant between 1000 

and 2000 trajectories. Once the number of trajectories reaches 4000, the GPU execution time begins to scale 

approximately linearly with the number of trajectories. As the number of trajectories increases, the number of threads 

launched increases which can lead to an increase in performance for certain applications on the GPU11. 

Once the number of trajectories reaches 2000, the GPU hardware using all floats executes the fastest. However, if 

all doubles are used, the GPU only runs faster than the KNL once 16000 trajectories are being reconstructed. The GPU 

version of this application executes approximately 20% faster than the KNL when 50000 trajectories are used. If a 

larger number of trajectories is being reconstructed and the current trend in execution time continues, then the GPU 

will begin to outperform the KNL by a wider margin. 

Table 2. Compiler flags used to target hardware, enable optimization, and enable 

parallelism using OpenMP and OpenACC. 

 GNU / gcc Intel / icc PGI / pgcc 

Enable 

Optimization 

-Ofast 

-flto 

-ffat-lto-objects 

-fast 

-ffat-lto-objects 

-fast 

-Minline 

-Mipa=fast,inline 

Target 

Hardware 

CPU -march=native -xhost - 

KNL -march=knl -xmic-avx512 - 

GPU - - 
-ta=tesla:cc35, 

maxregcount:130 

Enable OpenMP -fopenmp -qopenmp -mp 

Enable OpenACC - - -acc 
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Figure 3: Comparisons of hardware and compilers while scaling the number of trajectories reconstructed from 

1000 to 50000. For each trajectory count, the application was run 10 times and the average execution time is 

represented by each mark. The shaded regions display the spread in the results. 

VI. Summary and Conclusions 

This paper examines the use of parallel programming techniques on an algorithm that applies inertial navigation 

to trajectory reconstruction in a Monte Carlo dispersion process. The two parallel programming techniques being 

utilized are OpenMP and OpenACC, which are used on multi-core CPUs and GPUs, respectively. Two studies are 

conducted to determine optimal performance based on thread count with OpenMP and register per thread for 

OpenACC. Additionally, comparisons are shown between three different compilers and three different types of 

hardware. 

For this particular application, the amount of time and effort to enable the software to run in parallel on GPUs was 

much more than to run on CPUs or KNLs. When all the variables being used are defined as floats, the GPU performs 

significantly faster than the KNL. Additionally, if the number of trajectories being reconstructed is large enough and 

all doubles are used, then the GPU will execute the software faster than the KNL as well. If the execution time trend 

continues as the trajectory count increases past 50000, then cost to benefit ratio would be more favorable to the GPU. 

However, if the number of trajectories being reconstructed is not large and the use of double precision variables is 

necessary, then the cost of adapting the software exceeds the benefit of utilizing the GPU. In this case, the KNL is the 

ideal hardware type to use. Though this result could be different for newer GPU hardware such as the NVIDIA P100 

or V100, which will be tested in future work. 

Appendix 

 A pseudocode for the trajectory reconstruction algorithm is presented below. 

 

 
// Read data files 

Read Parameter values from data file 

Read IMU data and Initial conditions from data file 

 

// Start timer 
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// Trajectory loop 

// Initiate parallelization for both OpenMP (for CPUs/KNLs) 

// and OpenACC (for GPUs) 

 

#pragma omp parallel for private(trajectory_array) 

#pragma acc parallel loop private(trajectory_array) 

for (total number of trajectories) { 

 

Read row of IMU and initial condition array for the particular trajectory 

 

// Integration 

Given vehicle initial state, calculate first two time steps of IMU data 

integration using Euler method 

 

// Time loop, done sequentially 

for (number of time steps – 1) { 

 Integrate IMU data to calculate (𝑛 + 1) time step according to numerical 
 three-step predictor corrector method   

} 

 

} 

 

// End timer 

 

// Output Data 

Write initial and terminal vehicle state conditions for each trajectory to 

data file 
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