

ARMD Transformative Aeronautics Concepts Program CONVERGENT AERONAUTICS SOLUTIONS PROJECT **CLAS-ACT:** Conformal, Lightweight Antennas for Aeronautical **Communications** Technology

PI: Mary Ann Meador NASA Glenn Research Center Co-PI: James Downey NASA Glenn Research Center

September 18-20, 2018

Unmanned Air Systems (UAS) are increasing in use but range is mostly limited to line of sight

- Satellite Communication (SatCom) links would enable beyond line of sight (BLOS) coverage for UAS
- Currently only large UAS platforms can accommodate dish antennas
- Even so, they take up a lot of payload volume
- Smaller class UAS cannot accommodate SatCom Dish
- Solution: Conformal, Phased Array Antenna

Global Hawk/Northrop Grumman

ArticShark/Navmar Applied Sciences Corporation

NASA UAS that could be BLOS enabled by CLAS-ACT antenna (445-800 lb)

Range of UAS enabled by BLOS communications for coastal monitoring mission

L3 Viking 400

Navmar Tigershark XP

U.S. Navy/ NASA SIERRA

NASA (ASAB) Concept UAS

What we are trying to do

- Microwave antenna with high enough power for SatCom link
- Ultra low side lobes attenuated via electronic means to avoid interference with ground
- Built out of lightweight, low dielectric aerogels
- Conformal design to reduce drag and increase simplicity

8 element array shown in far-field range

- As much as double the gain and efficiency achieved depending on frequency
- 77 % lower density than same antenna array from conventional substrates!!

What difference will the CLAS-ACT antenna make?

Side lobes

Mainlobe

CLAS-ACT antenna using electronic beamforming will reduce interference to acceptable levels Potential interference issues with ITU* provisional Ku-band SatCom allocation for UAS

*International Telecommunication Union (ITU)

This will enable BLOS for small to medium UAS

Goals and challenges

Broken

antenna

Challenge: Use phase array antenna beamforming to mitigate ground station interference for ITU compliance for UAS

Challenge: Fabricate a tightly integrated antenna system after inventing a more flexible form of the aerogel Goal: Advance technologies for a Kuband phased array antenna using an aerogel substrate to reduce SWaP (size weight and power) on UAS SatCom systems

Where we are now: Making the aerogels more conformable

Rigid polymer backbone

25 to 75 % flexible links included in polymer backbone 25 % of rigid links replaced by flexible links

Antenna Design Process

Making an Antenna Lightweight & Conformal

Phased array composition

- Flexible aerogel layers (~3.3 mm) maximizes the benefits of the low dielectric constant
- Thin multi-layer stack of higher dielectric materials for the feed network
- Commercial transmit/receive (TR) chip modules provide electronic weighting of each element
- 64 element sub-array to demonstrate feasibility of 500-2500 element full scale antenna
- 50 % mass savings over conventional design

First Antenna Array Prototype Tested

- Developed technique to align and bond the aerogel substrate with the radiating elements as well as a microstrip feed layer
- Tested in an anechoic chamber at Glenn Research Center (GRC)

Antenna Subarray Design for Fabrication

- Flight prototype antenna circuit board design fabrication underway.
- Anechoic chamber characterization planned late September

Antenna Pattern Simulations

Simulated performance of 64 element sub-array

- Conformed to 16" radius
- Antenna-aircraft coupling effects
- Beam synthesis (with quantization) and null steering methods to meet ITU mask

Planned Testing of the CLAS-ACT Antenna

Antenna Array Simulation and Testing Flow Diagram

Antenna Range testing – this Fall

- Capture the expected performance of the array including gain and beam steering pattern
- Validate performance after environmental testing (e.g. vibration)

Hanger Testing on a UAS - January

 Capture installed antenna performance, including fuselage/radome attenuation effects

Flight testing on a UAS - February

 Capture antenna array performance and ground interference at low elevation angles (5° to 25°) during a UAS flight

Flight Test of CLAS-ACT Antenna on Global Hawk

- Working with Global Hawk team at Armstrong Flight Research Center (AFRC)
- Testing in restricted airspace around Edwards Air Force Base (AFB)
- Antenna will be mounted on simulated fuselage
 - Designed and built at Langley Reseach Center (LaRC)
- Mockup placed under radome inside the Global Hawk

New Portable Antenna Metrology System

- Developed at GRC to characterize antenna in-situ
- Deployed robotic scanner to AFRC hanger
 - Brought antenna range to aircraft
 - Results on NASA's Ikhana aided ground station design
- Pre-flight testing of antenna on Global Hawk in Jan.

Collaborative robotic arm and laser tracker used to test antenna on UAS at AFRC

CLAS-ACT Antenna In-Flight Characterization

Flight Testing on a UAS

Measurement ground station (MGS) will capture antenna array performance and ground interference at low elevation angles (5° to 25°) during UAS flight

- Aircraft will fly paths of varying altitude and constant range
- Characterize installed antenna pattern
- Real world feasibility assessment of side lobe reduction

Example Flight Passes for Measuring a Region of the Antenna Pattern

Challenge: ground stations sensitive enough to measure a signal specifically designed to be <u>very small</u>

Proposed Flight Test Plan for Global Hawk

- Ames Research Center (ARC) developed realistic flight paths for low elevation passes
- -5 degree to -25 degree negative elevation wrt aircraft wing
- Input to Northrup Grumman to produce Final Mission Plan

- Sensitivity analyses
 - Wind effects on flight path and antenna measurements
 - Dynamic noise floor analysis
 - Position uncertainty effects on antenna measurements

CLAS-ACT Team

- James Downey
- Bryan Schoenholz
- Marie Piasecki
- Bushara Dosa
- Peter Slater
- Seth Waldstein
- Anne Mackenzie
- Bill Fredericks
- Scott Kenner
- Ray Rhew
- Mark Cagle
- Jeremy Smith
- Andy Gutierrez

- Patricia Martinez
- Ricardo Arteaga
- Kelly Snapp
- Rick Alena
- Aaron Cohen
- Baochau Nguyen
- Stephanie Vivod
- Haiquan Guo
- Jessica Cashman
- Rocco Viggiano
- Marcos Pantoja
- Kevin Cavicchi
- Dan Oldham

Conformal Lightweight Antenna Systems for Aeronautical Communication Technologies (CLAS-ACT)

- Lead Center & Partner Centers: GRC, LaRC, ARC, AFRC
- External Collaborators: University of Akron
- Aeronautics Barrier to Overcome: Reduce sidelobes to meet requirements for provisional Ku band use for UAS for Beyond Line of Site Communications
- ARMD Strategic Thrusts and associated Outcome(s) addressed:
 - Thrust 1: Safe, Efficient Growth in Global Operations
 - BLOS enabled conformable antennas for UAS will transform NAS through NextGen technologies
 - Thrust 3. Ultra-efficient commercial vehicles
 - Improved vehicle efficiency through reduced weight and drag
 - Thrust 6: Assured autonomy for aviation transformation
 - Enable continuous, system-wide information connectivity supporting autonomous operations
- Idea/Concept: Antennas which enable beyond line of sight (BLOS) command and control for UAS to take advantage of newly assigned provisional Ku-bands for UAS; Unique antenna designs to avoid interference with ground; Unconventional substrates to reduce weight; Conformal designs to reduce drag
- Feasibility Assessment: Demonstrate conformability of aerogel substrates and feasibility of fabrication; Demonstrate high directivity antenna with reduced sidelobes using beamforming
- Feasibility Assessment Criteria: 20 dB reduction is sidelobes; 1 m bend radius of aerogel
- Duration of Execution & total full-cost: 2.5 years & \$3.5 M

- Utilize aliphatic diamines to replace 25 to 75 mol % of aromatic diamine
- Goal is
 - More bendable aerogels in 2-3 mm thicknesses
 - Lowest dielectric constant
 - Best mechanical properties
 - Best moisture resistance
- Three different aliphatic diamines studied
- Modeled data from three studies to make comparison among them and come up with optimum formulation(s)

1,3-Bis(4-aminophenoxy)neopentane (BAPN)

Antenna Pattern Calculations

Radiation Pattern for an 8x8 Array on A/C, Half Cylinder Approximation for A/C Body

Placement of 8x8 Array on Aircraft

50x50 Array Pattern With a 2° Beam Width, Cylindrical Approximation for A/C Body

Normalized power pattern in two planes.

Antenna Fabrication in progress

Antenna Design

Fabrication

Control Circuit

TR Module

Splitting

Network

LPKF

Control Design

Radome made out of

- Modulus is effected by the increase in density as aliphatic content increases
- DMBZ backbone has higher modulus than ODA even at lower density
- Picture shows DMBZ with 25% BAPN

- 500 lbs. MTOW class UAS cannot accommodate a satellite dish antenna due to system weight and volume
 - Ku band 48" dish antenna and associated communications equipment weight is 168 lbs. as fitted to Global Hawk.
- Iridium satellite systems offer global reach and are compact and light enough for Group 3 UAS
 - A single iridium channel is only 2.4. kb/s per channel; useful for command and control but generally insufficient bandwidth for most sensor data
 - Note that Iridium NEXT will support up to 1.4 Mbps
- For these reasons most Group 3 UAS are operated within line of site (LOS) of a ground station
 LOS is 150 km for an aircraft at 5000 ft. altitude assuming a ground station antenna height of 10 m
- CLAS-ACT enables Group 3 UAS to accommodate an antenna that supports high data rate (~25 Mb/s) communications via geostationary satellites, enabling beyond line-of-site operations with real time sensor-data monitoring

Note: D.O.D. UAS Group 3 is 55 lbs. to 1320 lbs.

UAS for CLAS-ACT

- There are very few UAS currently available in the flight regime between relatively small (10 lb. payload) and very large (1500 lb. payload)
- The lack of medium sized UAVs is likely due to restrictive regulations and because many of the potential missions can be performed with manned aircraft
 - Current FAA regulations require a Certificate of Authorization (COA) to fly UAVs over 55lbs. beyond visual range within the region of jurisdiction of the FAA
 - Currently, a COA is very unlikely to be granted for flying a large UAV over populated regions
 - It is often expedient to use a manned aircraft, rather than obtain a COA even though using a manned aircraft is potentially more expensive and restricted in endurance to a maximum of 12 hours or so
 - In the future, advanced autonomy that includes sense and avoid, plus proven very high reliability is expected to allow operation of all sizes of UAVs within the NAS

UAVs for CLAS-ACT

L3 Viking 400

No longer in production but NASA has several available for science missions

Navmar Tigershark XP Long Range

Navmar claim beyond line-of-sight capable. Variants of this UAV are

U.S. Navy/ NASA SIERRA

Experimental aircraft, limited availability. Presumably additional aircraft could be built.

NASA (ASAB) Concept UAV This is a conventional design powered by a small diesel engine

widely used by the D.O.D.

Dimensions		Weights		Performance	
Wingspan 20) ft.	MTOW	540 lbs.	Range	560 nmi
Length 15	ft.	Payload	100 lbs.	Endurance	8 h
Wing Area 43	3.7 ft ²	Sat Comm		Airspeed	70 kts
Aspect Ratio		Empty Weight	337 lbs.	Altitude	15,000 ft.
Engine Size 36	5 НР	Fuel Weight	150 lbs.		

Dimensions	Weights		Performance	
Wingspan 30 ft.	MTOW	800 lbs.	Range	1200 nmi
Length	Payload	150 lbs.	Endurance	15 h
Wing Area	Sat Comm		Airspeed	80 kts
Aspect Ratio	Empty Weight		Altitude	20,000 ft.
Engine Size	Fuel Weight	180 lbs.		

Dimensions	Weights	Performance	
Wingspan 20 ft.	MTOW 445 lbs	. Range 600 nmi	
Length 12 ft.	Payload 100 lbs	. Endurance 10 h	
Wing Area	Sat Comm	Airspeed 60 kts	
Aspect Ratio	Empty Weight	Altitude 12,000 ft.	
Engine Size	Fuel Weight		

Dimensions		Weights		Performance	
Wingspan 3	0 ft.	MTOW	500 lbs.	Range	1530 nmi
Length 16	6 ft.	Payload	50 lbs.	Endurance	28 h
Wing Area 6	2.5 ft ²	Sat Comm	75 lbs.	Airspeed	55 kts
Aspect Ratio 1	.5	Empty Weight	275 lbs.	Altitude	20,000 ft.
Engine Size 5	60 HP	Fuel Weight	100 lbs.		

Missions for 500 lbs. Class UAVs

- There are many potential missions for medium sized UAVs; one example is coastal monitoring
 - Harmful algae blooms
 - Turbidity
 - Water temperature (input for weather forecasting)
 - Pollution, e.g. oil spills
 - Photogrammetry, to monitor erosion over time
 - Disaster assistance, hurricanes
 - Marine life monitoring (e.g. whales, turtles)
 - Safety and security (Coastguard reconnaissance)
- Instrument package (weight < 50 lbs.)
 - Hyperspectral imager
 - High definition video and still camera
 - Thermal camera
 - Data processing computer
 - Data storage

GT study: CLAS-ACT Benefits Summary

- Increased responsiveness: ability to quickly and effectively communicate with aircraft
- Airspace management: quickly and easily redirect UAVs to prevent accidents
- Increased efficiency, communication, and coverage in swarm applications
- Vehicle health and performance monitoring

Source: Development of Cloud-Based UAV Monitoring and Management System

GT study: Some examples of UAV mission types and impact from CLAS-ACT antenna

Relative Score	Mission	Examples	CLAS-ACT benefits summary
	First Responder and Emergency Support	 Search and rescue Fire fighting Medical assistance Supplies delivery 	 Recognition of situation changes Remotely providing help and support (supplies and instructions)
	Disaster relief	 Rapid response Rescue assistance Disaster modeling	 Visualize and locate site and severity of disaster Instant situation updates in harmful environments Independence from ground-based systems that may be damaged
	Scientific	 Volcano measurement Species monitoring Fishing and oceanic Extreme environments 	 Real time data gathering Fast and accurate responder Minimal human risk and interaction
	Package delivery	 Mail Commercial and private delivery 	 Real-time tracking Fast and accurate redirection

GT study: Surface area, drag, weight of CLAS-ACT antenna

- Assuming a steady 30°bank angle turn the required area increases by 15% to 0.29 m2(3.11 ft2)
- Smallest size UAV (ThunderB) has a wing area
 >6x larger than this (~2 m2)
- Drag
 - Thickness of 1 cm
 - Will require a ramp to ensure lift not affected
 - Estimated drag increase <1% if applied to entire wing of smallest vehicle
- Weight
 - For required area the weight is 0.87 kg (1.9 lb)
 - Smallest UAV has a payload of ~8.8 lb

http://www.bluebird-uav.com/wpcontent/uploads/2014/07/SpyLite-GDT-710x375.jpg