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Unmanned Air Systems (UAS) are increasing in 
use but range is mostly limited to line of sight

• Satellite Communication (SatCom) links 
would enable beyond line of sight (BLOS) 
coverage for UAS

• Currently only large UAS platforms can 
accommodate dish antennas

• Even so, they take up a lot of  payload 
volume

• Smaller class UAS cannot accommodate 
SatCom Dish

• Solution: Conformal, Phased Array Antenna
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ArticShark/Navmar Applied Sciences Corporation

Global Hawk/Northrop Grumman
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NASA UAS that could be BLOS enabled by 
CLAS-ACT antenna (445-800 lb)
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Range of  UAS 
enabled by BLOS 
communications 
for coastal 
monitoring 
mission

L3 Viking 400

Navmar Tigershark XP

U.S. Navy/ NASA SIERRA

NASA (ASAB) Concept UAS 
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What we are trying to do

• Microwave antenna with high 
enough power for SatCom link 

• Ultra low side lobes
attenuated via electronic 
means to avoid interference 
with ground

• Built out of lightweight, low 
dielectric aerogels

• Conformal design to reduce 
drag and increase simplicity
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CLAS-ACT builds on aerogel antennas developed 
under Aero Seedling
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8 element array shown in far-field range

• As much as double the gain and efficiency achieved depending on 
frequency

• 77 % lower density than same antenna array from conventional 
substrates!!
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What difference will the CLAS-ACT antenna make?
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This will enable BLOS for small to medium UAS

CLAS-ACT antenna using electronic 
beamforming will reduce 

interference to acceptable levels

Side lobes

Potential interference 
issues with ITU* 

provisional Ku-band 
SatCom allocation for UAS

*International Telecommunication Union (ITU)
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Goals and challenges

Challenge: Use phase 
array antenna 
beamforming to 
mitigate ground station 
interference for ITU 
compliance for UAS

Challenge: Fabricate a 
tightly integrated antenna 
system after inventing a 
more flexible form of the 
aerogel

Goal: Advance 
technologies for a Ku-
band phased array 
antenna using an aerogel 
substrate to reduce SWaP
(size weight and power) 
on UAS SatCom systems

Rigid aerogel

Broken 
antenna
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Where we are now: 
Making the aerogels more conformable
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Rigid polymer backbone 25 to 75 % flexible 
links included in 
polymer backbone

25 % of rigid links replaced 
by flexible links

1
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Antenna Design Process
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Circular Patch Element Triangular Lattice Sub-Array Conformal Prototype 
Array for Flight Test
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Making an Antenna Lightweight & Conformal

Phased array composition
• Flexible aerogel layers (~3.3 mm) maximizes the benefits of the low dielectric constant
• Thin multi-layer stack of higher dielectric materials for the feed network
• Commercial transmit/receive (TR) chip modules provide electronic weighting of each element
• 64 element sub-array to demonstrate feasibility of 500-2500 element full scale antenna
• 50 % mass savings over conventional design

Stacked Patch Element
2.5 mm Aerogel

0.8 mm Aerogel

Microwave Printed Circuit 
Board (PCB) Stack

~1 mm

T/R Module 9
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• Developed technique to align and bond the 
aerogel substrate with the radiating elements 
as well as a microstrip feed layer 

• Tested in an anechoic chamber at Glenn 
Research Center (GRC)
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First Antenna Array Prototype Tested • 
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Antenna Subarray Design for Fabrication
• Flight prototype antenna circuit board design fabrication underway.
• Anechoic chamber characterization planned late September
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Placement of 8x8 Array on Aircraft

Null Steering of 8x8 Array
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Simulated performance of 64 element sub-array 
– Conformed to 16” radius
– Antenna-aircraft coupling effects
– Beam synthesis (with quantization) and null 

steering methods to meet ITU mask
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Antenna Pattern Simulations
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Antenna Range testing – this Fall 
• Capture the expected performance of the array 

including gain and beam steering pattern
• Validate performance after environmental testing 

(e.g. vibration)

Hanger Testing on a UAS - January
• Capture installed antenna performance, including 

fuselage/radome attenuation effects

Flight testing on a UAS - February
• Capture antenna array performance and ground 

interference at low elevation angles (5º to 25º) 
during a UAS flightAntenna Array Simulation and Testing Flow Diagram
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Planned Testing of the CLAS-ACT Antenna • 
Simulation Testing 



Flight Test of CLAS-ACT Antenna on Global Hawk

• Working with Global Hawk team at 
Armstrong Flight Research Center (AFRC)

• Testing in restricted airspace around 
Edwards Air Force Base (AFB)

• Antenna will be mounted on simulated 
fuselage 

– Designed and built at Langley Reseach Center 
(LaRC)

• Mockup placed under radome inside the 
Global Hawk
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New Portable Antenna Metrology System

• Developed at GRC to characterize antenna in-situ
• Deployed robotic scanner to AFRC hanger 

• Brought antenna range to aircraft
• Results on NASA’s Ikhana aided ground station design

• Pre-flight testing of antenna on Global Hawk in Jan.

Collaborative robotic arm and laser tracker used 
to test antenna on UAS at AFRC
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Flight Testing on a UAS
Measurement ground station (MGS) will capture antenna 
array performance and ground interference at low 
elevation angles (5º to 25º) during UAS flight
• Aircraft will fly paths of varying altitude and constant range 
• Characterize installed antenna pattern
• Real world feasibility assessment of side lobe reduction

Example Flight Passes for Measuring a 
Region of the Antenna Pattern 16

Challenge: ground stations 
sensitive enough to measure 
a signal specifically designed 

to be very small

CLAS-ACT Antenna In-Flight Characterization

~ 
~ MGS 

1736km 
AGL 

Indicates UAS passes required 
to characterize a ITU mask 

region of interest 

871km 
AGL 

• 
- Proposed ITU Mask at 40° Lat, 1 km altitude 
--0.8 m Dish Model (Bessel) 
--Phased Array beam synthesis (49x49) 
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• Ames Research Center (ARC) developed 
realistic flight paths for low elevation passes

• -5 degree to -25 degree negative elevation 
wrt aircraft wing

• Input to Northrup Grumman to produce 
Final Mission Plan

Main 
Lobe

4th side 
lobe 

3rd side 
lobe 

3-D Antenna 
Pattern

• Sensitivity analyses 
– Wind effects on flight path and antenna 

measurements
– Dynamic noise floor analysis
– Position uncertainty effects on antenna 

measurements

Proposed Flight Test Plan for Global Hawk
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CLAS-ACT Team
• James Downey
• Bryan Schoenholz
• Marie Piasecki
• Bushara Dosa
• Peter Slater
• Seth Waldstein
• Anne Mackenzie
• Bill Fredericks
• Scott Kenner
• Ray Rhew
• Mark Cagle
• Jeremy Smith
• Andy Gutierrez

18

• Patricia Martinez
• Ricardo Arteaga
• Kelly Snapp
• Rick Alena
• Aaron Cohen
• Baochau Nguyen
• Stephanie Vivod
• Haiquan Guo
• Jessica Cashman
• Rocco Viggiano
• Marcos Pantoja
• Kevin Cavicchi
• Dan Oldham
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Backup
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Conformal Lightweight Antenna Systems for Aeronautical Communication 
Technologies (CLAS-ACT)

• Lead Center & Partner Centers: GRC, LaRC, ARC, AFRC
• External Collaborators: University of Akron
• Aeronautics Barrier to Overcome: Reduce sidelobes to meet 

requirements for provisional Ku band use for UAS for Beyond Line 
of Site Communications

• ARMD Strategic Thrusts and associated Outcome(s) addressed:
– Thrust 1: Safe, Efficient Growth in Global Operations

• BLOS enabled conformable antennas for UAS will transform NAS through 
NextGen technologies

– Thrust 3. Ultra-efficient commercial vehicles
• Improved vehicle efficiency through reduced weight and drag  

– Thrust 6: Assured autonomy for aviation transformation
• Enable continuous, system-wide information connectivity supporting autonomous operations

• Idea/Concept: Antennas which enable beyond line of sight (BLOS) command and control for UAS to 
take advantage of newly assigned provisional Ku-bands for UAS; Unique antenna designs to avoid 
interference with ground; Unconventional substrates to reduce weight; Conformal designs to 
reduce drag

• Feasibility Assessment: Demonstrate conformability of aerogel substrates and feasibility of 
fabrication; Demonstrate high directivity antenna with reduced sidelobes using beamforming

• Feasibility Assessment Criteria: 20 dB reduction is sidelobes; 1 m bend radius of aerogel 
• Duration of Execution & total full-cost: 2.5 years & $3.5 M

• 



Approach to more flexible aerogels 

• Utilize aliphatic diamines to replace 25 to 75 
mol % of aromatic diamine

• Goal is 
– More bendable aerogels in 2-3 mm thicknesses
– Lowest dielectric constant 
– Best mechanical properties
– Best moisture resistance

• Three different aliphatic diamines studied
• Modeled data from three studies to make 

comparison among them and come up with 
optimum formulation(s) 
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Antenna Pattern Calculations
Radiation Pattern for an 8x8 Array on A/C, 
Half Cylinder Approximation for A/C Body

Placement of 8x8 Array on Aircraft

Null Steering of 8x8 Array to Avoid Interference 50x50 Array Pattern With a 2° Beam Width,  
Cylindrical Approximation for A/C Body

Array layout on cylindrical 
platform, 16- in. radius.
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Antenna Fabrication in progress
Antenna Design

Fabrication

Control Design

Control Circuit 
Fabrication

Splitting 
Network

TR Module

Multi Layer 
Bonding

+ 
~ -
~~ 

4 -
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Radome made out of 
polymer film for 

protection and to allow 
standard fabrication 

TR Modules 
(heat producing 
electronics) 
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Effect of aliphatic diamine content  on modulus

• Modulus is effected by the increase in 
density as aliphatic content increases

• DMBZ backbone has higher modulus 
than ODA even at lower density

• Picture shows DMBZ with 25% BAPN
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High Data Rate Satellite Communications for 500 lbs. MTOW 
Class UAS 

• 500 lbs. MTOW class UAS cannot accommodate a satellite dish antenna due to system weight and 
volume 
 Ku band 48” dish antenna and associated communications equipment weight is 168 lbs. as fitted 

to Global Hawk.

• Iridium satellite systems offer global reach and are compact and light enough for Group 3  UAS
 A single iridium channel is only 2.4. kb/s per channel; useful for command and control but 

generally insufficient bandwidth for most sensor data
 Note that Iridium NEXT will support up to 1.4 Mbps

• For these reasons most Group 3 UAS are operated within line of site (LOS) of a ground station
 LOS is 150 km for an aircraft at 5000 ft. altitude assuming a ground station antenna height of 10 m

• CLAS-ACT enables Group 3 UAS to accommodate an antenna that supports high data rate (~25 Mb/s) 
communications via geostationary satellites, enabling beyond line-of-site operations with real time 
sensor-data monitoring

Note: D.O.D. UAS Group 3 is 55 lbs. to 1320 lbs.
25
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UAS for CLAS-ACT

• There are very few UAS currently available in the flight regime between relatively small (10 
lb. payload) and very large (1500 lb. payload)

• The lack of medium sized UAVs is likely due to restrictive regulations and because many of 
the potential missions can be performed with manned aircraft
 Current FAA regulations require a Certificate of Authorization (COA) to fly UAVs over 

55lbs. beyond visual range within the region of jurisdiction of the FAA
 Currently, a COA is very unlikely to be granted for flying a large UAV over populated 

regions
 It is often expedient to use a manned aircraft, rather than obtain a COA even though 

using a manned aircraft is potentially more expensive and restricted in endurance to a 
maximum of 12 hours or so 

 In the future, advanced autonomy that includes sense and avoid, plus proven very high 
reliability is expected to allow operation of all sizes of UAVs within the NAS

26
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UAVs for CLAS-ACT

L3 Viking 400
No longer in production but 
NASA has several available for 
science missions

Dimensions Weights Performance
Wingspan       20 ft. MTOW                  540 lbs. Range             560 nmi
Length            15 ft. Payload                 100 lbs. Endurance      8 h
Wing Area      43.7 ft2 Sat Comm             Airspeed        70 kts
Aspect Ratio  Empty Weight      337 lbs. Altitude        15,000 ft.
Engine Size     36 HP Fuel Weight          150 lbs.

Navmar Tigershark XP Long Range

Navmar claim beyond line-of-sight 
capable. Variants of this UAV are 
widely used by the D.O.D.

Dimensions Weights Performance
Wingspan       30 ft. MTOW                  800 lbs. Range             1200 nmi
Length            Payload                 150 lbs. Endurance      15 h
Wing Area      Sat Comm             Airspeed        80 kts
Aspect Ratio  Empty Weight      Altitude        20,000 ft.
Engine Size     Fuel Weight          180 lbs.

U.S. Navy/ NASA SIERRA

Experimental aircraft, limited 
availability. Presumably additional 
aircraft could be built.

Dimensions Weights Performance
Wingspan       20 ft. MTOW                  445 lbs. Range             600 nmi
Length            12 ft. Payload                 100 lbs. Endurance     10 h
Wing Area      Sat Comm            Airspeed         60 kts
Aspect Ratio  Empty Weight       Altitude          12,000 ft.
Engine Size     Fuel Weight           

NASA (ASAB) Concept UAV 
This is a conventional design 
powered by a small diesel 
engine

Dimensions Weights Performance
Wingspan       30 ft. MTOW                 500 lbs. Range            1530 nmi
Length            16 ft. Payload                50 lbs. Endurance    28 h
Wing Area      62.5 ft2 Sat Comm            75 lbs. Airspeed       55 kts
Aspect Ratio  15 Empty Weight     275 lbs. Altitude         20,000 ft.
Engine Size     50 HP Fuel Weight         100 lbs.

27

• 



Missions for 500 lbs. Class UAVs

• There are many potential missions for medium sized UAVs; one example is coastal monitoring
 Harmful algae blooms
 Turbidity
Water temperature (input for weather forecasting)
 Pollution, e.g. oil spills
 Photogrammetry, to monitor erosion over time
 Disaster assistance, hurricanes
 Marine life monitoring (e.g. whales, turtles)
 Safety and security (Coastguard reconnaissance)

• Instrument package (weight < 50 lbs.)
 Hyperspectral imager
 High definition video and still camera
 Thermal camera
 Data processing computer
 Data storage

28
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GT study: CLAS-ACT Benefits Summary

• Increased responsiveness: ability to 
quickly and effectively communicate 
with aircraft

• Airspace management: quickly and 
easily redirect UAVs to prevent 
accidents

• Increased efficiency, communication, 
and coverage in swarm applications

• Vehicle health and performance 
monitoring

29

Source: Development of Cloud-Based UAV 
Monitoring and Management System
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GT study: Some examples of UAV mission types 
and impact from CLAS-ACT antenna

Relative 
Score

Mission Examples CLAS-ACT benefits summary

First Responder 
and Emergency 
Support

•Search and rescue
• Fire fighting
• Medical assistance
• Supplies delivery

• Recognition of situation changes
• Remotely providing help and support (supplies and 
instructions)

Disaster relief • Rapid response
• Rescue assistance
• Disaster modeling

• Visualize and locate site and severity of disaster
• Instant situation updates in harmful environments
• Independence from ground-based systems that may be 
damaged

Scientific •Volcano measurement
•Species monitoring
•Fishing and oceanic
•Extreme environments

• Real time data gathering
• Fast and accurate responder
• Minimal human risk and interaction

Package delivery •Mail
•Commercial and private 
delivery

• Real-time tracking
• Fast and accurate redirection

30
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GT study: Surface area, drag, weight of CLAS-ACT 
antenna

• Surface area
– Assuming a steady 30°bank angle turn the 

required area increases by 15% to 0.29 
m2(3.11 ft2)

– Smallest size UAV (ThunderB) has a wing area 
>6x larger than this (~2 m2)

• Drag
– Thickness of 1 cm
– Will require a ramp to ensure lift not affected
– Estimated drag increase <1% if applied to 

entire wing of smallest vehicle
• Weight

– For required area the weight is 0.87 kg (1.9 lb)
– Smallest UAV has a payload of ~8.8 lb
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http://www.bluebird-uav.com/wp-
content/uploads/2014/07/SpyLite-GDT-710x375.jpg

• 


	Slide Number 1
	Unmanned Air Systems (UAS) are increasing in use but range is mostly limited to line of sight
	NASA UAS that could be BLOS enabled by �CLAS-ACT antenna (445-800 lb)
	What we are trying to do
	CLAS-ACT builds on aerogel antennas developed under Aero Seedling
	What difference will the CLAS-ACT antenna make?
	Goals and challenges
	Where we are now: �Making the aerogels more conformable
	Antenna Design Process
	Making an Antenna Lightweight & Conformal
	First Antenna Array Prototype Tested
	Antenna Subarray Design for Fabrication
	Slide Number 13
	Planned Testing of the CLAS-ACT Antenna
	Flight Test of CLAS-ACT Antenna on Global Hawk
	New Portable Antenna Metrology System
	CLAS-ACT Antenna In-Flight Characterization
	Proposed Flight Test Plan for Global Hawk
	CLAS-ACT Team�
	Backup
	Conformal Lightweight Antenna Systems for Aeronautical Communication Technologies (CLAS-ACT)�
	Approach to more flexible aerogels 
	Antenna Pattern Calculations
	Antenna Fabrication in progress
	Effect of aliphatic diamine content  on modulus
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	GT study: CLAS-ACT Benefits Summary
	GT study: Some examples of UAV mission types and impact from CLAS-ACT antenna
	GT study: Surface area, drag, weight of CLAS-ACT antenna

