

Presentation to
ESA Workshop:
Towards the Use of
Lunar Resources
July 3, 2018

Gerald B. Sanders, NASA gerald.b.sanders@nasa.gov (281) 483-9066

www.nasa.gov

What is *In Situ* Resource Utilization (ISRU)?

ISRU involves any hardware or operation that harnesses and utilizes 'in-situ' resources to create products and services for robotic and human exploration

Resources

- Traditional: **Water**, atmospheric gases, volatiles, solar wind volatiles, metals, alloys, sunlight, etc.
- Non-traditional: Trash and wastes from crew, spent landers and residuals, etc.

Resource Assessment (Prospecting)

Assessment and mapping of physical, mineral, chemical, and water resources, terrain, geology, and environment

In Situ Manufacturing

Production of replacement parts, machines, and integrated systems from feedstock derived from one or more processed resources

Resource Acquisition

Atmosphere constituent collection, and material/volatile collection via drilling, excavation, transfer, and/or manipulation before Processing

In Situ Construction

Civil engineering, infrastructure emplacement and structure construction using materials produced from *in situ* resources

Radiation shields, landing pads, roads, berms, habitats, etc.

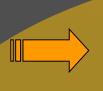
Resource Processing/ Consumable Production

Conversion of acquired resources into products with immediate use or as feedstock for construction & manufacturing

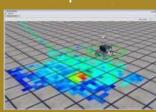
➤ Propellants, life support gases, fuel cell reactants, etc.

In Situ Energy

Generation and storage of electrical, thermal, and chemical energy with *in situ* derived materials


- ➤ Solar arrays, thermal storage and energy, chemical batteries, etc.
- 'ISRU' is a capability involving multiple elements to achieve final products
- 'ISRU' does not exist on its own. Must connect and tie to users/customers of ISRU products

Space 'Mining' Cycle: Prospect to Product

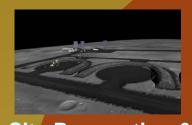

Resource Assessment (Prospecting)

Local Resource Exploration/Planning

Mining

Habitats

Power


Propulsion

Life Support & EVA

Depots

Maintenance & Repair

Site Preparation & **Infrastructure Emplacement**

Crushing/Sizing/

Beneficiation

Processing

Waste

Remediation

Spent Materia

Remova

ISRU Changes How We Can Explore Space

Mass Reduction

- >7.5 kg mass savings in Low Earth Orbit for every1 kg produced on the Moon or Mars
- Chemical propellant is the largest fraction of spacecraft mass

Risk Reduction & Flexibility

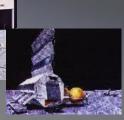
• A

Space Resource Utilization

- Allows reuse of transportation systems
- Reduces number and size of Earth launch vehicles

Expands Human Presence

- Number of launches & mission operations reduced
- Use of common hardware & mission consumables enables increased flexibility
- In-situ fabrication of spare parts enables sustainability and self-sufficiency
- Radiation & landing/ascent plume shielding
- Reduces dependence on Earth


Solves Terrestrial
Challenges & Enables
Space Commercialization

- Develops alternative & renewable energy technologies
- New additive construction
- CO₂ remediation
- Green metal production

- Provides infrastructure to support space commercialization
- Propellant/consumable depots at Earth-Moon L1 & Surface for Human exploration & commercial activities

- Increase Surface Mobility & extends missions
- Habitat & infrastructure construction
- Substitutes sustainable infrastructure cargo for propellant & consumable mass

ISRU for Lunar Missions

Lunar Resource Prospecting & Mine Planning

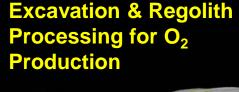
- Terrain and surface feature mapping
- Surface/subsurface mineral and glass concentration & distribution mapping
- Solar wind & polar volatile concentration & distribution mapping

Mission Consumable Production

- Complete Life Support/Extra Vehicular Activity closure for Oxygen (O₂) and water (H₂O)
- Produce/regenerate Fuel Cell Reactants (in conjunction with Power)
- Gases for science and cleaning
- > Propellant production; O₂ and fuel (H₂ and/or CH₄) for robotic and human vehicles

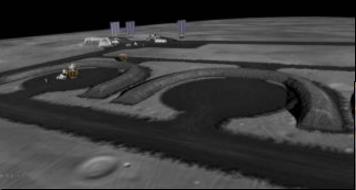
Site Preparation and Outpost Deployment/Emplacement

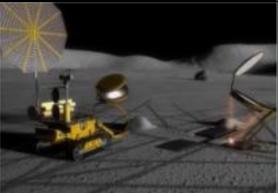
- Site surveying and terrain mapping
- Crew radiation protection (In-situ water production or bulk regolith)
- Landing area clearing, surface hardening, and berm building for Lunar Lander landing risk and plume mitigation
- Area and road clearing to minimize risk of payload delivery and emplacement


Outpost Growth and Self-Sufficiency


- Fabrication of structures that utilize in-situ materials (with Habitats)
- Production of feedstock for fabrication and repair (with Sustainability)
- Solar array, concentrator, and/or rectenna fabrication (with Power)
- Thermal energy storage & use from processed regolith (with Power)

Lunar ISRU Mission Capability Concepts


Resource Prospecting – Looking for Polar Ice



Carbothermal Processing with Altair Lander Assets

Landing Pads, Berm, and Road Construction

Thermal Energy Storage Construction

Consumable Depots for Crew & Power

Use the Moon as a Precursor to Mars

Identify and characterize available resources (especially polar region) that:

- Strongly influence mission phases, locations, and designs to achieve maximum benefit of ISRU
- Is synergistic with Science and space commercialization objectives
- Is synergistic with surface water characterization on Mars

Demonstrate ISRU concepts, technologies, & hardware that reduce the mass, cost, & risk of human Mars missions

- Excavation and material handling & transport
- Volatile/hydrogen/water extraction
- Thermal/chemical processing subsystems for oxygen and fuel production
- Cryogenic fluid storage & transfer
- Trash/Waste Processing in conjunction with Life Support
- Metal extraction and fabrication of spare parts

Use Moon for operational experience and mission validation for Mars

- Pre-deployment & remote activation and operation of ISRU assets without crew
- Making and transferring mission consumables (propellants, life support, power, etc.)
- Landing crew with pre-positioned return vehicle or 'empty' tanks
- 'Short' (<90 days) and 'Long' (300 to 500 days) Mars surface stay dress rehearsals

Develop and evolve surface exploration assets linked to ISRU capabilities that enable new exploration capabilities

- Human and robotic hoppers for long-range surface mobility and global science access; power-rich distributed systems; enhanced radiation shielding, etc.
- Repair, fabrication, and assembly techniques to mitigate mission risk and logistics mass.

Lunar Resources & Products of Interest

LUNAR RESOURCES

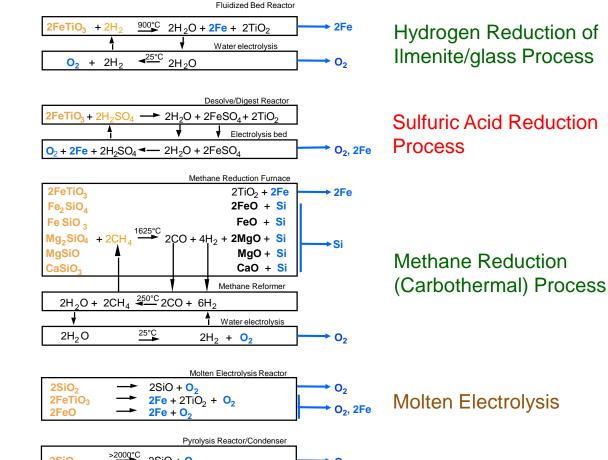
MARE REGOLITH

Ilmenite - 15% FeO•TiO₂ 98.5%

Pyroxene - 50%

CaO•SiO ₂	36.7%
MgO•SiO ₂	29.2%
FeO•SiO ₂	17.6%
Al ₂ O ₃ •SiO ₂	9.6%
TiO ₂ •SiO ₂	6.9%

Olivine - 15%


2MgO•SiO ₂	56.6%
2FeO•SiO ₂	42.7%

Anorthite - 20%

CaO•Al₂O₃•SiO₂ 97.7%

VOLATILES (Solar Wind & Polar Ice/H₂)

Hydrogen (H_2) 50 - 150 ppmHelium (He)3 - 50 ppmHelium-3 (3 He) 10^{-2} ppmCarbon (C)100 - 150 ppmPolar Water $(H_2O)/H_2$ 1 - 10%

 O_2

→ O₂

→ O₂

O₂, 2Fe

→ O₂, 2AI

→ 40₂, 2Ca

→ 5O₂, 2AI, 2Ca

Vapor Pyrolysis Process

Thermal Volatile Extraction

2SiO + 02

2Fe + O₂

4AIO + 0,

 $2Mg + O_2$

2Ca + O₂

2Fe + 2TiO_2 + 0_2

2AIO + 2AI + 0,

2Ca + 4AIO + 4SiO + 40

2Ca + 2AIO + 2AI + 4SiO + 50

2SiO₂

2FeO

 $2AI_2O_3$

2AI₂O₃

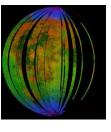
2MgO

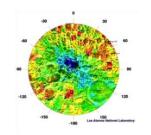
2CaO

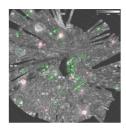
2FeTiO₃

Global Assessment of Lunar Volatiles

Apollo Samples




Moon Mineralogical Mapper (M³)


Lunar Crater Observation & Sensing Sat. (LCROSS)

Clementine Chandrayaan LRO Mini SAR/RF

	Solar Wind	Core Derived Water	Water/Hydroxyl	Polar Volatiles	Polar Ice
Instrument	Apollo samples	Apollo samples	M3/DIVINER	LCROSS	Mini SAR/RF
	Neutron Spectrometer				
Concentration	Hydrogen (50 to 150 ppm)	0.1 to 0.3 wt % water	0.1 to 1% water;	3 to 10% Water equivalent	Ice layers
	Carbon (100 to 150 ppm)	in Apatite		Solar wind & cometary volatiles	
	Helium (3 to 50 ppm)	0 to 50 ppm water in volcanic glass	1-2% frost in shadowed craters	(CO, H2, NH3, organics)	
Location	Regolith everywhere	Regolith; Apatite	Upper latitudes	Poles	Poles; Permanent shadowed craters
Environment	Sunlit	Sunlit	Low sun angle	Low or no sunlight; Temperatures sustained at	<100 K, no sunlight
			Permanent shadow <100 K	<100 K	
Depth	Top several meters; Gardened	Top 10's of meters	Top mm's of regolith	Below 10 to 20 cm of desiccated layer	Top 2 meters

Development of Lunar ISRU Technologies & Systems

Resource Characterization & Mapping

- Lunar polar ice/volatile characterization
 - RESOLVE/Resource Prospector

Mission Consumable Production

- Oxygen Extraction from Regolith
 - Hydrogen Reduction
 - Carbothermal Reduction
 - Molten Oxide Electrolysis
 - Ionic Liquids
- Oxygen and Fuel from Mars Atmosphere
 - Carbon Dioxide Capture
 - Mars Soil Drying
- Water and Fuel from Trash
 - Steam Reforming
 - Combustion/Pyrolysis
- Water Processing
 - Water Electrolysis
 - Water Cleanup

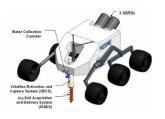
In-Situ Energy Generation, Storage & Transfer

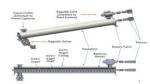
- Solar Concentrators
- Heat Pipes

Civil Engineering & Surface Construction

- Lunar Regolith Excavation
- Lunar Regolith and Mars Soil Transfer
- Lunar Regolith Size Sorting & Beneficiation
- Lunar Regolith Simulant Production
- Surface Preparation

NASA ISRU Soil/Water Extraction and Trash Processing Technology Development


- Sample drills and augers (JPL, ARC, SBIRs)
- Scoops and buckets (GRC, KSC, JPL, Univ., SBIRs)
- Auger and pneumatic transfer (KSC, GRC, SBIRs)

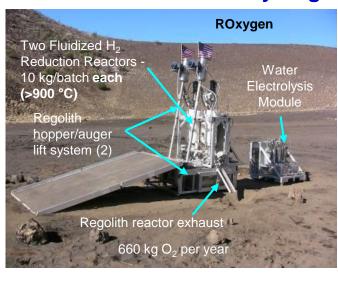


Water Extraction from Soils

- Closed soil reactors: fluidized & auger (JSC, SBIRs)
- Microwave soil processing (MSFC, JPL, SBIR)
- Open soil processing reactors (GRC)
- Downhole soil processing (MSFC, SBIRs)
- Capture for lunar/Mars soil processing (NASA, SBIRs)
- Water cleanup for lunar/Mars soil processing (KSC, JSC, SBIRs)

Trash/Waste Processing into Gases/Water

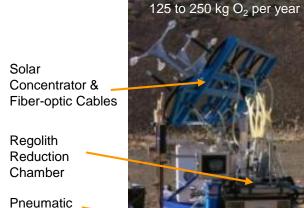
 Combustion, Pyrolysis, Oxidation/Steam Reforming (GRC, KSC, SBIRs)



Lunar Processing – Oxygen & Metal Extraction

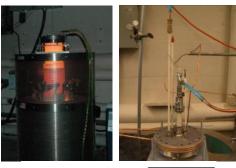

Hydrogen Reduction of Regolith

Rotating H₂ Reduction Reactor - 17 kg/batch



O₂ Cryo Tank

- 1. Heat Regolith to >900 C
- 2. React with Hydrogen to Make Water
- 3. Crack Water to Make O₂



Carbothermal Reduction of Regolith

- 1. Melt Regolith to >1600 C
- 2. React with Methane to produce CO and H₂
- 3. Convert CO and H₂ to Methane & Water
- 4. Crack Water to Make O₂

Molten Electrolysis of Regolith

Molten Regolith Core (current streamlines in red)

Power

Power

Phase Boundary (1500K)

(Cathode ($(0^2) \rightarrow 2e + 1/2O_{2(d)}$)

Cathode ($(0^2) \rightarrow 2e + 1/2O_{2(d)}$)

Temp (K)

Temp (K)

Cathode ($(0^2) \rightarrow 2e + 1/2O_{2(d)}$)

(Sa)

(Sa)

(Sa)

(Sa)

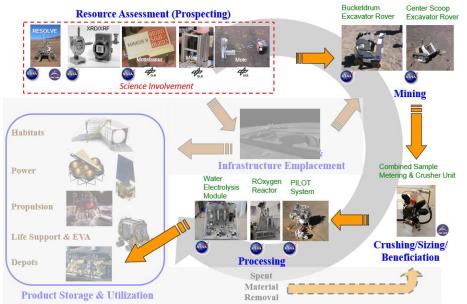
(Sa)

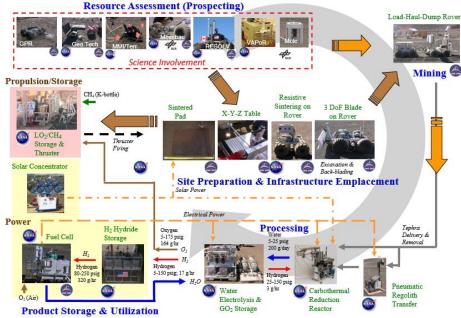
(Sa)

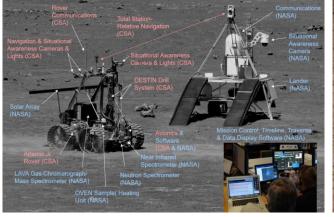
(Sa)

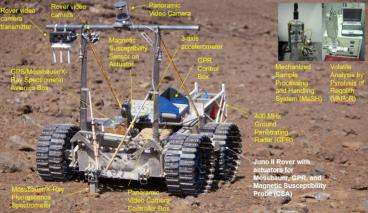
(Sa)

- 1. Melt Regolith to >1600 C
- 2. Apply
 Voltage to
 Electrodes
 To Release
 Oxygen


Lift System and Auger Loading


ISRU Development: System Testing and Integration Through Analog Field Tests

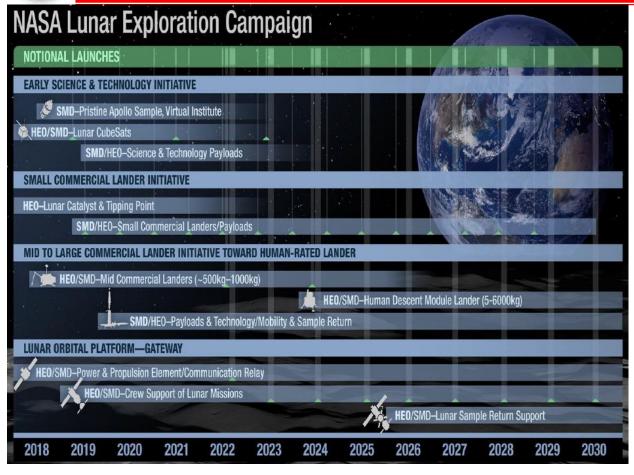

Hardware & Operation Integration at 2008 Analog Field Test



Hardware & Operation Integration at 2010 Analog Field Test

Lunar Polar Volatile & Mineral Prospecting at 2012 Analog Field Test

Lunar ISRU TRL Advancement


Significant advancement from 2006 to 2010

TRL increase in ETDP	At Start	At End	Delta]
System Level	•	!		
Lunar Volatile Characterization (RESOLVE)	1	5	4	Advanced since 2010
H ₂ Reduction of Regolith	2-3	5	2-3	
CH₄ Reduction of Regolith	2-3	5	2-3	
Molten Oxide Reduction of Regolith	2	3	1	
Trash Processing for Water/Methane Production	2	2-3	0-1	Advanced since 2010
Subsystem Level				
Regolith Transfer & Handling				
Regolith Transport Into/Out of Reactor	2	5	3	
Beneficiation of Lunar Regolith	2-3	2-3	0-1	
Size Sorting of Lunar Regolith	2-3	2-3	0-1	
Oxygen Extraction From Regolith				
H ₂ Reduction of Regolith Reactor	3	5	2	
Gas/Water Separation & Cleanup	2	4-5	2-3	Advanced since 2010
CH₄ Reduction of Regolith Reactor	3	5	2	
CH₄Reduction Methanation Reactor	3-4	4-5	1-2	
MOE of Regolith Anode/Cathode	1-2	3-4	2-3	
MOE of Regolith Molten Mat'l Removal	1-2	3	1-2	
MOE Cell and Valving	2-3	3	0-1	
Water/Fuel from Trash Processing				
Trash Processing Reactor	2	2-3	0-1	Advanced since 2010
In-Situ Energy Generation, Storage, and Transfer				
Solar Thermal Energy for Regolith Reduction	2	5	3	

Lunar ISRU-Related Missions

Korea Pathfinder Lunar Orbiter (KPLO) - 2020

 ShadowCam Map reflectance within permanently shadowed craters

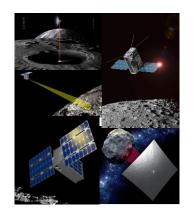
Commercial Lunar Payload Services (CLPS)

 Request for Proposals for 50, 200, and 500 kg class payload missions

Dev. & Advancement of Lunar Instrumentation (DALI)

 Request for Proposals for science instruments & ISRU experiments

Science/Prospecting Cubesats (SLS EM-1 2018)

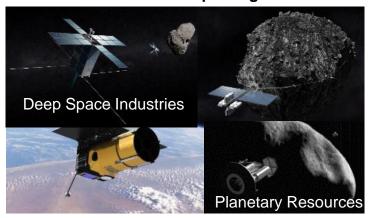

■ Lunar Flashlight: Near IR laser and spectrometer to look into shadowed craters for volatiles

■ Lunar IceCube: Broadband InfraRed Compact High Resolution Explorer Spectrometer

■ LunaH-MAP: Two neutron spectrometers to produce maps of near-surface hydrogen (H)

Skyfire/LunIR: Spectroscopy and thermography for surface characterization

■ NEA Scout: Multispectral camera for NEA morphology, regolith properties, spectral class


Space Commercialization & Mining

Promote Terrestrial Involvement in Space & ISRU: Spin In-Spin Out

Private Industry

Resource Prospecting

Commercial Cargo & Crew

The state of the s

SpaceX Boeing Dragon2 CST-100

SNC Dream Chaser

ULA Cislunar 1000 Vision

Satellite Servicing

Government Interest & Legislation

US Space Law & Directives

H. R. 2262-18

"CHAPTER 513—SPACE RESOURCE COMMERCIAL EXPLORATION AND UTILIZATION

"§ 51303. Asteroid resource and space resource rights

"A United States citizen engaged in commercial recovery of an asteroid resource or a space resource under this chapter shall be entitled to any asteroid resource or space resource obtained, including to possess, own, transport, use, and sell the asteroid

US Space Resource Act

Public Law 114–90 114th Congress

An Act

To facilitate a pro-growth environment for the developing commercial space industry by encouraging private sector investment and creating more stable and predictable regulatory conditions, and for other purposes.

US Commercial Space Launch Competitiveness Act

59501

Presidential Documents

Space Policy Directive-1 of December 11, 2017

Reinvigorating America's Human Space Exploration Program

Space Directive 1

Luxembourg Space Law

NASA NextSTEP Broad Agency Announcements

FabLab

Crew habitats

Power & Propulsion Studies

Final Comment

It's not about being able to do ISRU.

It's not about having the most efficient ISRU system.

It is about achieving the benefits of ISRU for a reasonable cost, mass, and risk.

Thank You

Questions?

Main *Natural* Space Resources of Interest for Human Exploration

Moon

Mars

Asteroids

Water (Hydrogen)

Icy Regolith in Permanently Shadowed Regions (PSR)

Solar wind hydrogen with Oxygen

Hydrated Soils/Minerals:
Gypsum, Jarosite,
Phylosilicates, Polyhdrated
Sulfates
Subsurface Icy Soils in
Mid-latitudes to Poles

Subsurface Regolith on C-type Carbonaceous Chondrites Drinking, radiation shielding, plant growth, cleaning & washing

Making Oxygen and Hydrogen

Oxygen

Minerals in Lunar Regolith: Ilmenite, Pyroxene, Olivine, Anorthite Carbon Dioxide in the atmosphere (~96%)

Minerals in Regolith on S-type Ordinary and Enstatite Chondrites

Breathing

 Oxidizer for Propulsion and Power

Carbon (Gases)

 CO, CO₂, and HC's in PSR

Solar Wind from Sun (~50 ppm) Carbon Dioxide in the atmosphere (~96%)

Hydrocarbons and Tars (PAHs) in Regolith on C-type Carbonaceous Chondrites Fuel Production for Propulsion and Power

Plastic and Petrochemical Production

Metals

Minerals in Lunar Regolith

- Iron/Ti: Ilmenite
- Silicon: Pyroxene, Olivine, Anorthite
- Magnesium: Mg-rich Silicates
- Al: Anorthitic Plagioclase

Minerals in Mars Soils/Rocks

- Iron: Ilmenite, Hematite,
 Magnetite, Jarosite, Smectite
- Silicon: Silica, Phyllosilicates
- Aluminum: Laterites,
 Aluminosilicates, Plagioclase
- Magnesium: Mg-sulfates, Carbonates, & Smectites, Mg-rich Olivine

Minerals in Regolith/Rocks on S-type Stony Iron and M-type Metal Asteroids

- In situ fabrication of parts
- Electical power generation and transmission

Note: Rare Earth Elements (REE) and Platinum Group Metals (PGM) are not driving Resources of interest for Human Exploration

ISRU Implementation Life Cycle

Identify Resource & Products

Establish Site & Operations

Perform Mining Ops

Definition

Prospecting

Resource **Analysis**

Mining Technology Readiness

Site-Mine **Planning**

Site-Mine **Development** Site-Mine Operations & Maintenance

Processing

Product and **Application**

- Determine Resource Utilization **End Goals**
- Initial Feasibility Study
- Multi-Site Evaluation
- Initial Cost **Analysis**
- Weigh Alternatives
- Go/No-Go **Decision**
- Plan Program and Approach

 Global Resource

- Evaluation
- Site Selection
- Site Imaging/ Characterization
- Resource Identification and

Verification

- Other Potential Uses/Users
- Assess Return On Investment

- Estimate Reserve Size
- Test/Sample Resource

Quality

- Understand Geotechnical Properties of Minerals
- Resource Analysis for

- Demonstrate 'Scalable' Hardware
- Demonstrate Operations for All Processes from Extraction to Product
- Evaluate Processina **Options**

Storage

- Select Mining Site
- Environmental **Analysis**
- Electronic Modeling & Simulation
- Develop Power Sources
- Infrastructure **Analysis**
- Design **Transportation** and Comm.
- Contingency Planning

- Infrastructure Excavation
 - Development/ Set up
- Site Preparation, Landing, and Roads
- Construct Infrastructure and Processing **Facilities**

- Resource Extraction
- Manage Operations
- Remediate Site as Needed
- Sort and Refine Resources
- Process Resources Into Feedstocks
- Resource Transfer
- Recycle or Repurpose Wastes or Byproducts for Useful Purposes

- Export Resources from Site
- Convert Resource to Finished Product
- Deliver to End Users

Pilot Operation – Not Human Mission Critical

Decision: Is Exploitation of Resources Beneficial?

Decision: Are Resources. Site. & Technology Viable for Exploitation?

Decision: Are Resources. Site, & Technology Viable for Full Mining?

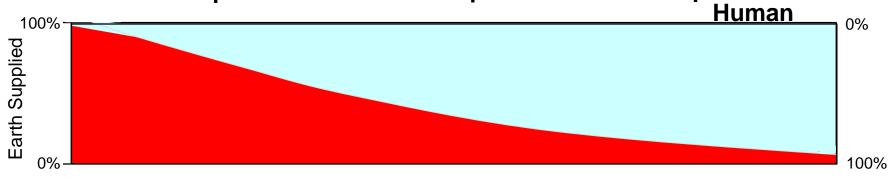
Milestone: Is Site & Infrastructure Ready for Initial Mining?

Decision: Is Initial Mining and Product Viable for Mission Critical Use?

Full Operation - Human Mission Critical

Milestone: Is Site & Infrastructure Ready for Full Mining?

Phased Approach to ISRU Architecture Incorporation


Mission Criticality

Current approach is to utilize phased approach to incorporate ISRU with minimum risk to mission success

Engineering Validation & Pilot Operations

Utilize/Full Implementation Human

Purpose

- Characterize local material/resources; evaluate terrain, geology, lighting, etc.
- Demonstrate critical technologies, functions, and operations
- Verify critical engineering design factors & environmental impacts
- Address unknowns or Earth based testing limitations (simulants, micro/low-q, contaminants, etc.)
- ExoMars
- Resource Prospector
- Mars 2020
- Lunar Cubesats

Purpose

- Enhance or extend capabilities/reduce mission risk
- Verify production rate, reliability, and long-term operations
- Verify integration with other surface assets
- Verity use of ISRU products
- Mars Surface Pathfinder
- Lunar short stay

Purpose

- Enhance or enable new mission capabilities
- Reduce mission risk
- Increase payload & science capabilities

- Mars DRA 5.0
- Evolvable Mars Campaign
- Lunar Outpost

Leverage (Gear) Ratios using ISRU

...Adds This

Much To the

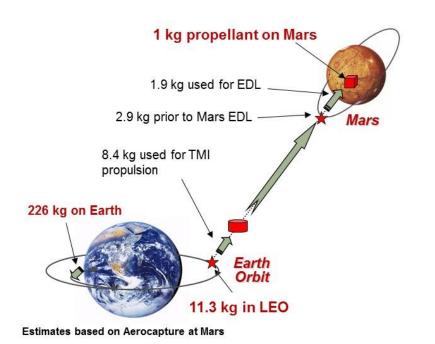
Every 1 kg of propellant made on the Moon or Mars saves 7.4 to 11.3 kg in LEO

Potential 334.5 mT launch mass saved in LEO

= 3 to 5 SLS launches avoided per Mars

Ascent

Mars mission


Oxygen (O₂) only 75% of ascent propellant mass: 20 to 23 mT

O₂/Methane (CH₄) 100% of ascent propellant mass: 25.7 to 29.6 mT

Regeneration of rover fuel cell reactant mass

Phobos mission

Trash to O₂/CH₄ 1000+ kg of propellant

A Kilogram of Mass Delivered Here	Adds This Much Initial Architecture Mass in LEO	Launch Pad Mass
Ground to LEO		20.4 kg
LEO to Lunar Orbit (#1→#2)	4.3 kg	87.7 kg
LEO to Lunar Surface (#1→#3; e.g., Descent Stage)	7.5 kg	153 kg
LEO to Lunar Orbit to Earth Surface (#1	9.0 kg	183.6 kg
Lunar Surface to Earth Surface (#3—#5; e.g., Lunar Sample)	12.0 kg	244.8 kg
LEO to Lunar Surface to Lunar Orbit (#1→#3→#4; e.g., Ascent Stage)	14.7 kg	300 kg
LEO to Lunar Surface to Earth Surface (#1#3#5; e.g., Crew)	19.4 kg	395.8 kg

ISRU Influence on Mission Architectures

ISRU has greatest influence at the site of the resource/production

- Transportation (propellant is the largest 'payload' mass from Earth)
 - Crew ascent from Moon/Mars surface
 - O₂ only provides up to 80% of propellant mass
 - O₂/fuel full asset reuse and surface hopping
 - Crew/Cargo ascent and descent from Moon/Mars surface reusable
 - Supply orbital depots for in-space transportation
 - Cis-lunar (L1 to GEO or LEO)
 - Trans-Mars

Power (mission capabilities are defined by available power)

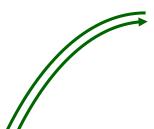
- Nighttime power storage/generation
 - Fuel cell reactants increase amount and regeneration
 - Thermal storage
- Mobile power fuel cell reactants
- Power generation: in situ solar arrays, 'geo'thermal energy

Infrastructure and Growth

- Landing pads and roads to minimize wear and damage
- Structures and habitats

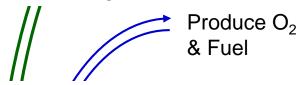
Crew Safety

- Radiation protection
- Logistics shortfalls (life support consumables, spare parts)


Benefit of ISRU Derived Propellants is a Function of Lander Design, Use, & Rendezvous/Depot Orbit

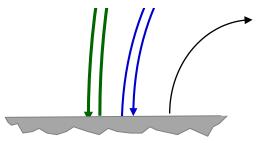
ISRU for Lunar Ascent/Descent

& Other Destination Use


Deliver O₂/Fuel or Water to Depots for usage elsewhere

- Return to Earth (cis-lunar)
- Delivery to LEO
- NEO's and Mars

Requires reusable single stage lunar lander w/ substantial payload capability


Cryos vs Water

ISRU for Lunar Ascent/Descent & Global Surface Exploration

- Requires reusable single stage lunar lander
- Does not require orbital depot for ascent/descent if both O₂ & fuel can be produced on the surface

ISRU For Lunar Ascent Only

Propellant for Ascent Only; Descent Propellant from Earth or Orbital Depot Approach considered for Constellation & most Lunar architecture studies since it supports two stage non-reusable lander concepts from start

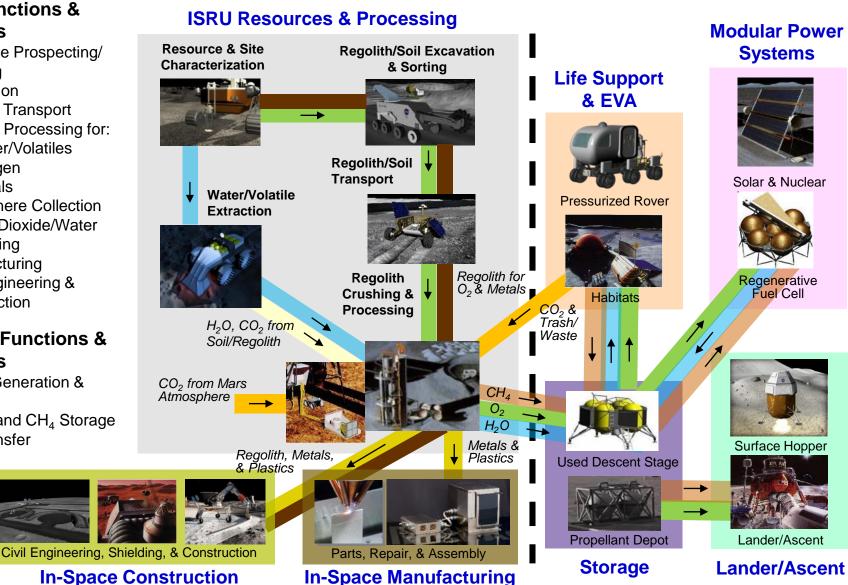
The greater the Delta-V of maneuvers performed by ISRU-derived propellants, the greater the benefit

ISRU Impact on Exploration System Requirements

	Without ISRU	With ISRU
	Propellant selection based on development	Propellant selection based on ISRU products from
Propulsion	cost and performance	available resources
	Propulsion cycle (pressure vs pump) based	Production cycle based on influence of ISRU on Delta-V
	on development cost and performance	and reusability
	Non-reusable or limited reusability with Earth	Reusability with single stage landers possible
	supplied propellants and depots	
	Air and Water recycling technologies and	ISRU products can reduce the level of closure required,
	systems based on maximizing closure of	thereby reducing development cost and system
Life Support	oxygen and water loops	complexity
Life Support	Trash/waste processing aimed at maximizing	Trash/waste transferred to ISRU to maximize fuel
	water extraction and minimizing oxygen	production and minimize residuals. Trash processing
	usage	hardware can be minimized to some level of drying
	Radiation and micrometeoroid shields based	Regolith (piling or habitat burial) or in-situ water for
	on Earth supplied materials. Storm closets to	greater radiation protection possible. This can change
	minimize mass impact	habitat layout and eliminate need for storm closets
Habitat	Fully constructed on Earth. Hard shell or	In-situ shelters construction possible. Consumables for
	inflatable	inflation
	Self-contained thermal management	Use of thermal energy sharing with ISRU or creation of in-
		situ thermal storage for heat removal or usage
	Mobility primarily based on science and	Mobility based on high torque/low speed excavation and
Mobility	human activities	civil engineering needs
	Full situational awareness and flexible	Simplified situational awareness and navigation required
	navigation system	for ISRU applications
Power	Self-contained units. Solar array and	Distributed power generation and storage, esp. fuel cell
	batteries	reactant storage and regeneration
	Fuel cell reactant based on regeneration	Fuel cell reactant based on in-situ resources available
	technique alone	
	Increase in power generation is a function of	In-situ growth of power thru fuel cell consumable, in-situ
	delivery from Earth	thermal, and in-situ manufacturing

ISRU Integrated with Exploration Elements

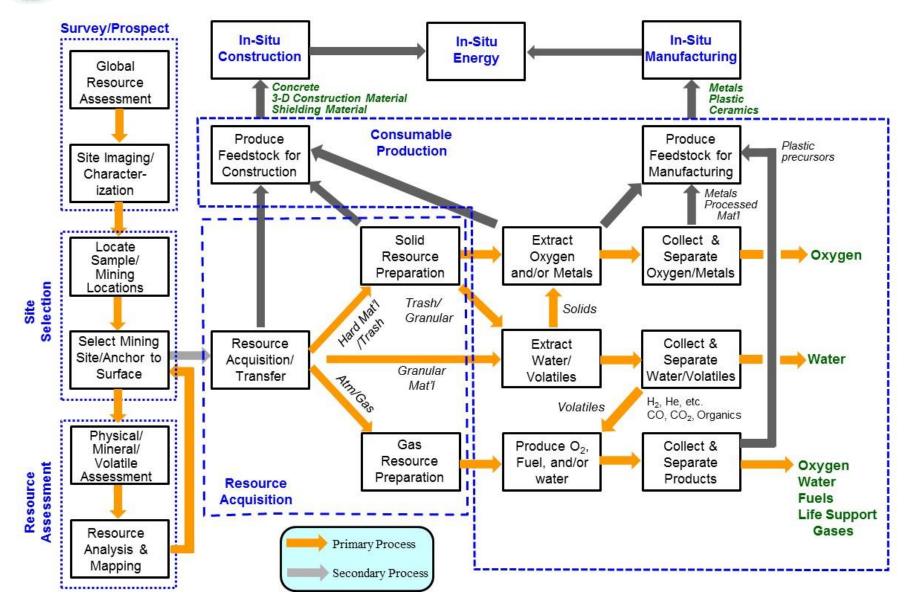
(Mission Consumables)



ISRU Functions & Elements

- Resource Prospecting/ Mapping
- Excavation
- Regolith Transport
- Regolith Processing for:
 - Water/Volatiles
 - Oxygen
 - Metals
- **Atmosphere Collection**
- Carbon Dioxide/Water Processing
- Manufacturing
- Civil Engineering & Construction

Support Functions & Elements


- Power Generation & Storage
- O₂, H₂, and CH₄ Storage and Transfer

ISRU Capability-Function Flow Chart

Mission Consumables: Regolith vs Polar Water/Volatiles

Oxygen from Regolith

- Can be incorporated into the architecture from the start with low-moderate risk
 - Resource characteristics and parameters are reasonably well known
 - Multiple approaches for extraction possible; 2 demonstrated to TRL 4-5 for short periods of time
- Provides 75 to 80% of chemical propulsion propellant mass (fuel from Earth)
- Experience from regolith excavation, beneficiation, and transfer applicable to In Situ Manufacturing and Construction and Mars hydrated soil extraction

Water and Volatiles from Polar Regolith

- Cannot be incorporated into the architecture from the start with low-moderate risk
 - Resource characteristics and parameters are not well known
- Polar Water/Volatiles is "Game Changing" and Enables Long-term sustainability
 - Availability of water for propellants can strongly influence propulsion system design (propellant selection and reusability) and transportation architecture (depots, hoppers, lander reuse, etc.)
 - Provides 100% of chemical propulsion propellant mass
 - Reuse of cargo and human landers and transportation elements can reduce longterm mission costs and enable new mission concepts
 - Provides significantly more options for radiation protection, food production, etc. over what is available from lunar regolith

NASA should pursue both Development and Insertion of Oxygen from Regolith with Prospecting and Evaluation of Polar Ice/Volatiles for Long Term Sustainability

Why Perform Analog Field Testing for Science, Exploration & ISRU?

Key Programmatic Analogue Field Test Purpose

- Expand NASA and CSA partnership; Include other International Partners in analogues
- Expand integration of Science & Engineering for exploration, particularly with ISRU
- Link separate technology and system development activities
- Develop and enhance remote operations and mission concepts; introduce new technologies
- Evaluate parallel paths and competing concepts
- Be synergistic with other analogue test activities (past and future)
- Public Outreach, Education, and "Participatory Exploration"

Key <u>Technical</u> Analogue Field Test Purpose

- Stress hardware under realistic environmental and mission operation conditions to improve path to flight
- Improve remote operations & control of hardware for surface exploration and science
- Promote the testing of multiple surface and transportation systems to better understand integration and operation benefits and issues
- Promote use of common software, interfaces, & standards for control and operation (ISECG)
- Focus on interfaces, standards, and requirements (ISECG)
- Focus on modularity and 'plug n play' integration (ISECG)

Intrinsic Benefits of Field/Analog Testing

- Develop Scientists, Engineers, and Project Managers for future flight activities
- Develop International Partnerships
- Develop Teams and Trust Early
- Develop Data Exchange & Interactions with International Partners (ITAR)

1st ISRU Analog Field Test: 2008 (1 of 2)

Lunar Prospecting

- Scarab Rover
- RESOLVE
- TriDAR Vision System
- Tweels

Outpost-Scale O₂ from Regolith

- ROxygen H₂ Reduction
- Water Electrolysis
- Cratos Excavator

- PILOT H₂ Reduction
- Water Electrolysis
- Bucketdrum Excavator

Process Control & Science

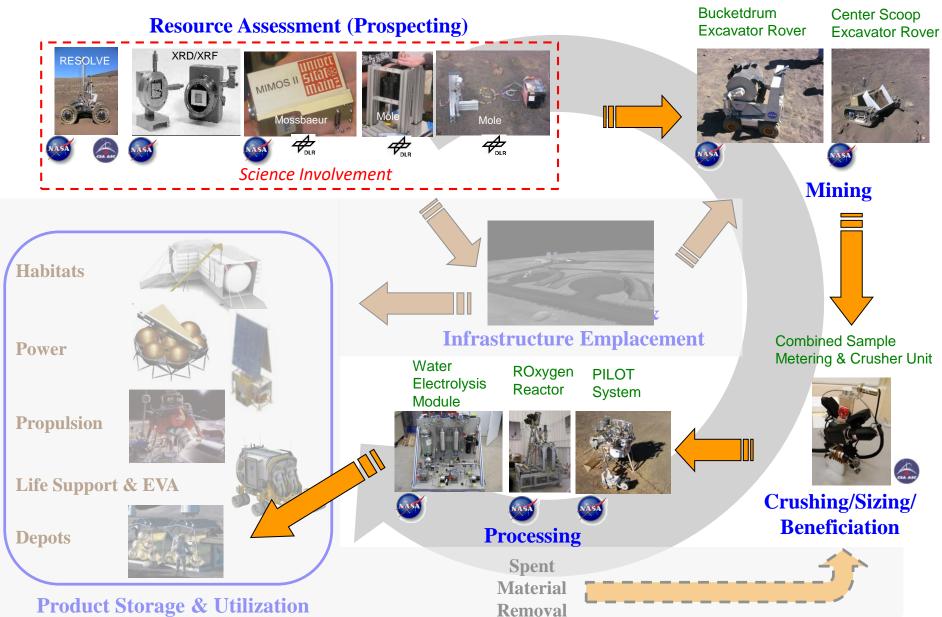
- Moessbauer
- Mini Chemin XRD/XRF

Canadian Space Agency

- TriDAR imager, Satellite communications, remote operation of Drill and TriDAR navigation, and on-site personnel and payload mobility
- NORCAT, Xiphos, Argo, Virgin Technologies, EVC, Ontario Drive Gear, University of Toronto

- Instrumented "Mole" & Sample Capture Mole

- Carnegie Mellon University
 - SCARAB Rover



1st ISRU Analog Field Test: 2008 (2 of 2)

2nd ISRU Analog Field Test: 2010 (1 of 3)

NASA Hardware List & Team Members

Site & Resource Exploration

- RESOLVE Drill
- Combined Moessbauer/XRF
- MMAMA/FSAT Instruments
 - Cone Penetrometers (Dynamic, Percussive, & Manual)
 - Heat Flow Probe
 - Multispectral Microscopic Imager (MMI)
 - X-Ray Diffraction
 - Borehole XRF
 - VAPoR Mass Spectrometer
 - RESOLVE Chemical Plant –Gas Chromatograph
 - Data Integration

Site Preparation & Excavation

- Solar Concentrator & fiber optics with sun tracking system
- Resistive heater surface sintering

Oxygen Extraction from Regolith

- Carbothermal reduction module with regolith feed system
- ROxygen Gen 1 water electrolysis module
- Pneumatic regolith lift device

Energy

- Solar Concentrator & fiber optics with sun tracking system
- Sunlight flux/intensity measurement instrument
- Power conditioning for fuel cell power system

Product Storage and Utilization

- Liquid oxygen/methane tank and cryocooler cart
- Hydrogen hydride tanks
- O₂/CH₄ thruster hot-fire into tephra

Participant/Hardware Supplier

NASA/NORCAT JSC KA/University of Mainz (Germany) & DLR

Honeybee Robotics Honeybee Robotics Arizona State Univ. Arizona State Univ.

LaRC, APL/Univ of Wash.

GSFC

KSC, JSC, GRC, ASRC

ARC, UC Davis, & McMaster Univ

PSI (SBIR Phase III)

KSC[°]

Orbitec JSC

KSC/ASRC & Honeybee

PSI (SBIR Phase III)

PSI

NORCAT & JSC

JSC

JSC and CSA JSC and WASK

8 System Modules – 7 Instruments 6 NASA Centers, 6 Small Businesses, 5 Universities

(42 people plus visitors)

2nd ISRU Analog Field Test: 2010 (2 of 3)

Neptec

Xiphos

Noggin

Xiphos

NORCAT

NORCAT

CSA Hardware/Software List

Site & Resource Exploration	Participant/Hardware Supplier		
 TriDAR vision system (Triangulating LIDAR) 	Neptec		

ERT (Extended Range TriDAR, also called DTO)

HPC (data compression software) (Hybrid Processing Card)

Ground Penetrating Radar(3)

3D Data Fusion (3 D subsurface visualization software)

EXPLORE (ISRU site selection filter and algorithm software)

Geotechnical Measurement Equipment (Cone Penetrometer/Shear Vane)

Site Preparation & Excavation

ISRU MAT/ANT Rovers (6) (Multi Agent Teaming/Artificial Neural Tissue) NORCAT/ODG/Univ of Toronto

Articulated joint (coupling of 2 rovers to accommodate heavy payloads) NORCAT/ODG NORCAT/EVC

Plow Attachments (3)

Excavation Attachments: Long (1) & Short (1) NORCAT/EVC

Autonomous Regolith Delivery system (1) NORCAT/Neptec

Solar Sintering XYZ Table Rastering Device (1) **NORCAT**

Product and Utilization

Mining vehicle Fuel Cell/H₂ Hydride Tank (1 at 10 KW) NRCan (Natural Resources Canada)

Infrastructure

Satellite Communications to CSA HQ (Mainland) VoIP service CSA/CRC (Communications Research Center)

Secure telemetry links to other agencies from CSA CSA/CRC **On-Site Wireless Communications** Virgin Tech

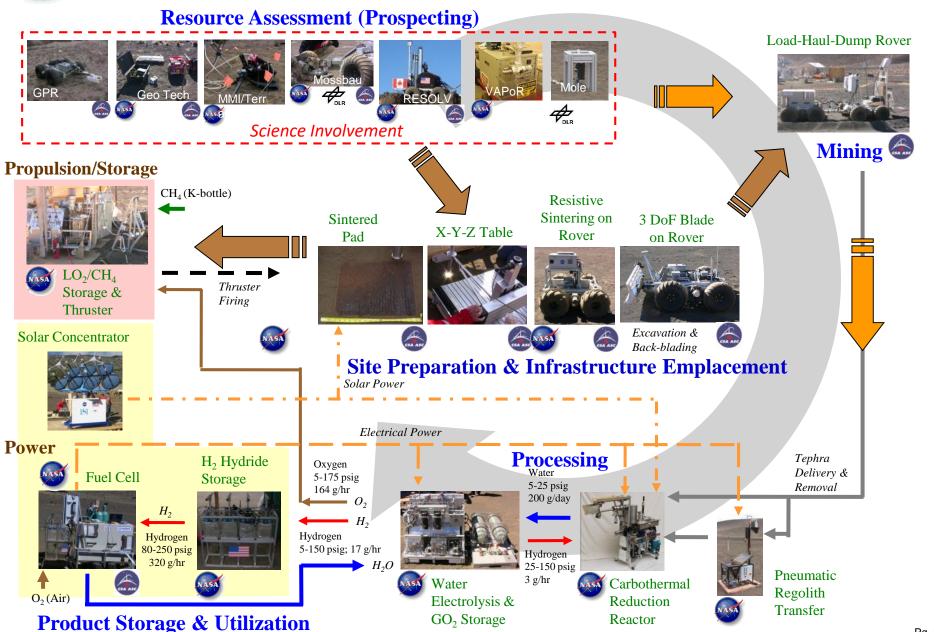
Multi media studio CSA/CRC

ExDOC Control Center at CSA HQ (Exploration Development Ops Centre) **CSA**

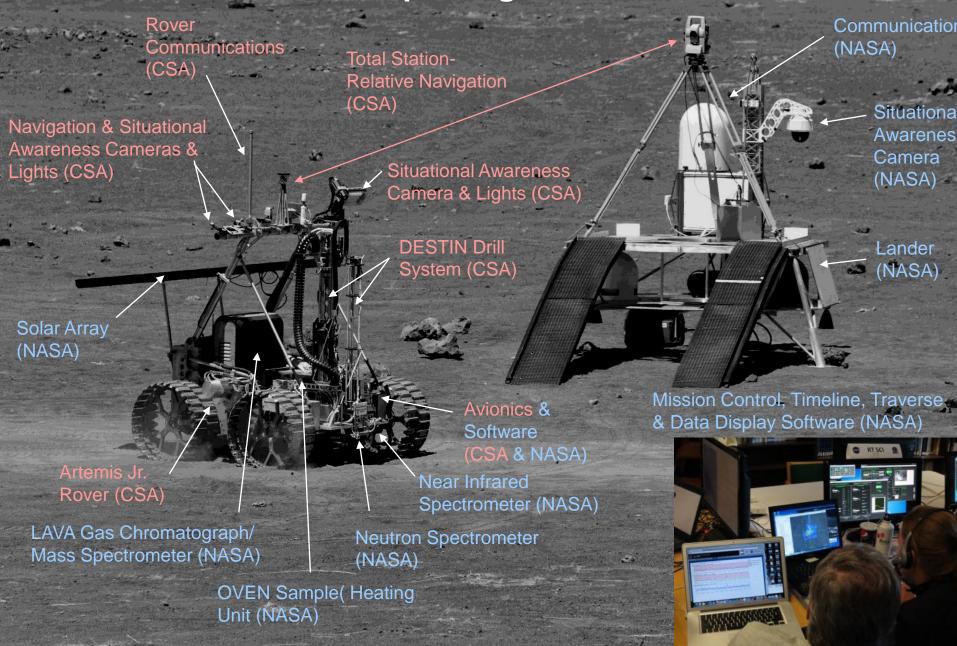
Large Rover (Argo Avenger) CSA/Ontario Drive (ODG)

Lunar Link Emulator (LLE) **Xiphos**

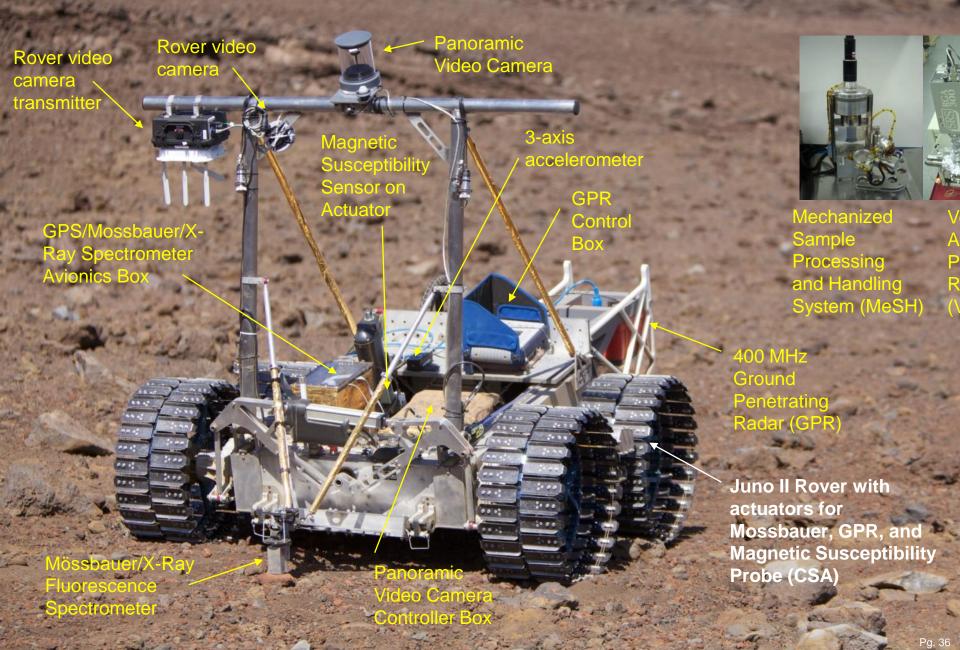
Base Camp (mining camp structures), personnel tracking system CSA/NRCan


Food Preparation YUM Culinary/Cambrian College

> 12 System Modules & Attachments; Infrastructure 3 Government Agencies, 8 Small Businesses, 2 Universities



2nd ISRU Analog Field Test: 2010 (3 of 3)



3rd ISRU Analog Field Test: Lunar Polar Prospecting Mission Simulation

3rd ISRU Analog Field Test: Lunar Polar Prospecting Mission Simulation

