

Marshall Space Flight Center

The Lightweight Integrated Solar Array and Transceiver

TRL6 4-petal Omnidirectional ambient deployment 10/06/2016

Thin-film solar arrays for small spacecraft

Sprat September 2018 || John Carr, Ph.D

[MOTIVATION]

NASA

Small spacecraft are power starved

Surface area, mass, and volume are *limited resources*.

Capability is choked...

Grow spacecraft...or shrink subsystem...

[OUR THIN-FILM SOLUTION]

Coupled with thin-film solar cell work throughout the community...

[THE LISA-T SYSTEM]

The Lightweight Integrated Solar Array and anTenna (LISA-T)

Marshall Space Flight Center

The Lightweight Integrated Solar Array and Transceiver

TRL6 4-petal Omnidirectional ambient deployment 10/06/2016

National Aeronautics and Space Administration Planar – pointed, high performance

Omni – GN&C simplicity and non-pointed

Core components can also be configured as high power planar

Marshall Space Flight Center

The Lightweight Integrated Solar Array and Transceiver (LISA-T)

TRL6 4-petal planar ambient deployment 11/10/2016

[LISA-T: KEY METRICS]

Solar Array Key Metrics

Planar

Parameter	SOA (best)	IMM Array	CIGS Array
Flat Point panel			
Array power generation	~80W (6U)	230.9W	134.0W
Array stowage volume	$\sim 142 kW/m^3$	461.8kW/m ³	340.0kW/m ³
Array mass	~130W/kg	378.5W/kg	250.9W/kg

Note: LISA-T power levels are scalable between ~50 and 500W+.

- 170 to 280% higher pointed power
- 300% better Stowage/Mass Rates
- Scalable to 625% power increase or to meet current power levels w/ better stow/mass

Omnidirectional

Parameter	SOA (best)	IMM Array	CIGS Array
Omnidirectional			
Array power generation	7.3W (3U)	101.0W	60.0W
Array stowage volume	$\sim 33 W/m^3$	101.0kW/m ³	60.0kW/m ³
Array mass	~53W/kg	75.7W/kg	47.8W/kg
Generation axes	2-axis	3-axis	3-axis

- 800 to 1400% higher non-pointed power
- Similar Stowage/Mass Rates
- True 3-axis generation

IMM – Inverted Metamorphic Multijunction Solar Cell

CIGS – Copper Indium Gallium (di)Selenide Solar Cell

[ENVIRONMENTAL TESTING AND SURVIVABILITY]

Humidity Exposure

National Aeronautics and

Space Administration

Atomic Oxygen exposure

Particulate radiation exposure

Near UV exposure

Rapid thermal cycling

Extended operation at temperature

Hot/Cold thermal vacuum deployments

Hot/Cold thermal vacuum deployments

Stowed

Mast release

Mast deployed closed

Petal unfurled

NASA

Sequential testing for 'combined' environments

×.

Alpha Space Test & Research Alliance

MISSE10 November 2018

LISA-T sample real estate

MISSE10 November 2018

National Aeronautics and Space Administration

NA SA

lational Aeronautics and

Space Administration

High-Efficiency Low-Mass Solar Cell Systems MISSE10 | 2018

NASA

LISA-T can operate/survive in LEO and is moving forward...

[TRL 7 FLIGHT DEMONSTARTION: LEAPEM]

Tech demonstration to facilitate infusion?

Target Duration:

- 1 Months minimal
- 4 Months nominal
- 6+ Months desired

Large scale production for swarms or large single asset?

Print-Assisted Photovoltaic Assembly (PAPA) NASA 2018

 National Aeronautics and Space Administration

3.0

NASA

Questions?

Thin-film solar arrays for small spacecraft

Sprat September 2018 || John Carr, Ph.D