

January 2019

NASA/TM2019-220247

NESC-RP-15-01097

Improvements to the Copernicus Trajectory

Design and Optimization System for Complex

Space Trajectories

Daniel G. Murri/NESC

Langley Research Center, Hampton, Virginia

Gerald L. Condon

Johnson Space Center, Houston, Texas

Jacob Williams and Anubhav H. Kamath

Jacobs Technology, Houston, Texas

Randy A. Eckman

Johnson Space Center, Houston, Texas

Ravishankar Mathur

Emergent Space Technologies, Laurel, Maryland

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA scientific and technical information (STI)

program plays a key part in helping NASA maintain

this important role.

The NASA STI program operates under the

auspices of the Agency Chief Information Officer.

It collects, organizes, provides for archiving, and

disseminates NASA’s STI. The NASA STI

program provides access to the NTRS Registered

and its public interface, the NASA Technical

Reports Server, thus providing one of the largest

collections of aeronautical and space science STI in

the world. Results are published in both non-NASA

channels and by NASA in the NASA STI Report

Series, which includes the following report types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase

of research that present the results of NASA

Programs and include extensive data or

theoretical analysis. Includes compilations of

significant scientific and technical data and

information deemed to be of continuing

reference value. NASA counter-part of peer-

reviewed formal professional papers but has

less stringent limitations on manuscript length

and extent of graphic presentations.

 TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of

specialized interest, e.g., quick release reports,

working papers, and bibliographies that contain

minimal annotation. Does not contain extensive

analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

 CONFERENCE PUBLICATION.

Collected papers from scientific and

technical conferences, symposia, seminars,

or other meetings sponsored or

co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

 TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing

and publishing research results, distributing

specialized research announcements and feeds,

providing information desk and personal search

support, and enabling data exchange services.

For more information about the NASA STI

program, see the following:

 Access the NASA STI program home page

at http://www.sti.nasa.gov

 E-mail your question to help@sti.nasa.gov

 Phone the NASA STI Information Desk at

757-864-9658

 Write to:

 NASA STI Information Desk

 Mail Stop 148

 NASA Langley Research Center

 Hampton, VA 23681-2199

http://www.sti.nasa.gov/
file:///C:/Users/shstewar/Documents/Templates_Reports/Templates_PubWebSite/Templates_RevJan2009/help@sti.nasa.gov

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

January 2019

NASA/TM2019-220247

NESC-RP-15-01097

Improvements to the Copernicus Trajectory

Design and Optimization System for Complex

Space Trajectories

Daniel G. Murri/NESC

Langley Research Center, Hampton, Virginia

Gerald L. Condon

Johnson Space Center, Houston, Texas

Jacob Williams and Anubhav H. Kamath

Jacobs Technology, Houston, Texas

Randy A. Eckman

Johnson Space Center, Houston, Texas

Ravishankar Mathur

Emergent Space Technologies, Laurel, Maryland

Available from:

NASA STI Program / Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

Fax: 757-864-6500

Acknowledgments

The authors wish to acknowledge those who have beta-tested the Copernicus

version 5.0 release: David E. Lee at the Johnson Space Center (JSC), Amelia

Batcha (JSC), Timothy Dawn (JSC), and Elizabeth Williams (JSC/, a.i.

Solutions).

The use of trademarks or names of manufacturers in the report is for accurate reporting and does not

constitute an official endorsement, either expressed or implied, of such products or manufacturers by the

National Aeronautics and Space Administration.

NESC Document #: NESC-RP-15-01097 Page #: 1 of 80

NASA Engineering and Safety Center

Technical Assessment Report

Improvements to the Copernicus Trajectory Design and

Optimization System for Complex Space Trajectories

November 15, 2018

NESC Document #: NESC-RP-15-01097 Page #: 2 of 80

Report Approval and Revision History

NOTE: This document was approved at the November 15, 2018, NRB. This document was

submitted to the NESC Director on November 27, 2018, for configuration control.

Approved: Original Signature on File 11/27/18

 NESC Director Date

Version Description of Revision
Office of Primary

Responsibility
Effective Date

1.0 Initial Release Mr. Daniel Murri,

NASA Technical

Fellow for Flight

Mechanics

11/15/18

NESC Document #: NESC-RP-15-01097 Page #: 3 of 80

Table of Contents

Technical Assessment Report

1.0 Notification and Authorization ... 5

2.0 Signature Page .. 6

3.0 Team List .. 7
3.1 Acknowledgements ... 7

4.0 Executive Summary ... 8

5.0 Assessment Plan ... 10

6.0 Copernicus Enhancements .. 10
6.1 New Copernicus GUI .. 10
6.2 Benefits of New GUI .. 10
6.3 3D Graphics Upgrades .. 15
6.3.1 OpenFrames with Qt and PyQt ... 16
6.3.2 3D Object Interaction .. 16
6.3.3 Synergy with Other NASA Programs ... 20
6.3.4 MacOS and Linux Testing and Support .. 21
6.3.5 Additional OpenFrames Enhancements .. 21
6.4 Cross-Platform Capability – New Linux and Mac Versions .. 22
6.4.1 CMake ... 23
6.4.2 Software Development Practices .. 23
6.4.3 Copernicus as a Service .. 24
6.4.4 Improved Plugins Capabilities .. 24
6.4.5 Software Architecture Improvements ... 25
6.4.6 Enhanced Python Scripting Capabilities ... 26
6.4.7 Bug Fixes .. 29

7.0 Summary ... 29

8.0 Findings, Observations, and NESC Recommendations.. 29
8.1 Findings .. 29
8.2 Observations ... 30
8.3 NESC Recommendations ... 30

10.0 Other Deliverables ... 30

12.0 Recommendations for NASA Standards and Specifications .. 30

13.0 Definition of Terms .. 30

14.0 Acronyms and Nomenclature List .. 31

15.0 References ... 32

Appendices ... 33

NESC Document #: NESC-RP-15-01097 Page #: 4 of 80

List of Figures
Figure 6.2-1. PyQt Copernicus GUI .. 12

Figure 6.2-2. Old vs New GUI .. 12

Figure 6.2-3. GUI Main Window shown in Brushed Metal theme in Constantia, size 8 font. 13

Figure 6.2-4. Example Dialog (Graphics Options) shown in High Visibility/Contrast Dark

Button Theme, Calibri size 8 font. ... 14

Figure 6.2-5. Grids Support Indefinite Number of Undos/Redos to Allow Users to Correct

Common Mistakes Quickly ... 15

Figure 6.3.2-1. Interactive Widgets in a 3D Scene with OpenFrames ... 16

Figure 6.3.2.2-1. An osgEarth-generated Globe in OpenFrames .. 18

Figure 6.3.2.2-2. Accurate Sun-based Lighting on the Earth and Moon ... 19

Figure 6.3.2.4-1. Viewing a Secondary Spacecraft as seen from the Primary Spacecraft 19

Figure 6.4-1. Copernicus Running on Linux via the X2Go Remote Desktop Client 23

Figure 6.4.4-1. A Copernicus Mission is Constructed from Segments and Plugins. 24

Figure 6.4.5-1. Copernicus takes Advantage of the Strengths of Fortran 2008, Python, and C++. 25

Figure 6.4.6-1. Simplified Example of Code to Create an Input Deck in Python that Represents a

Prototypical International Space Station (ISS) Trajectory. .. 27

Figure. 6.4.6-2. Collection of RoboCopPy Input Deck Segment Object References 28

NESC Document #: NESC-RP-15-01097 Page #: 5 of 80

Technical Assessment Report

1.0 Notification and Authorization

The purpose of this assessment was to develop updates and new features for the NASA

Copernicus Spacecraft Trajectory Design and Optimization analysis tool (version 5.0) for

application to NASA programs and projects. These updates will significantly improve the ability

to design and optimize complex trajectories over multiple trajectory phases; will allow the use of

unique vehicle-specific guidance, control, and trajectory strategies and constraints; and the

creation of an almost unlimited number of unique user-defined capabilities. The primary

stakeholders for this assessment are the trajectory design and optimization analysts and

engineers, and the chief engineers and project managers for existing programs, projects, and/or

tasks that involve impulsive, finite burn, and/or continuous thrust trajectories (e.g., Sun, planet,

comet, asteroid, halo orbit, Lagrange point, and distant retrograde orbit). The breadth of

application spans the preliminary engineering and mission design concepts and optimization, to

the development of candidate reference missions and integrated mission design for vehicle

system design and operation, to the design and development of flight trajectories and associated

propulsive maneuvers for real-time operations.

NESC Document #: NESC-RP-15-01097 Page #: 6 of 80

2.0 Signature Page

Submitted by:

Team Signature Page on File – 11/28/18

Mr. Daniel G. Murri Date

Significant Contributors:

Mr. Gerald L. Condon Date

Mr. Jacob Williams Date Mr. Anu H. Kamath Date

Mr. Randy A. Eckman Date Dr. Ravi Mathur Date

Signatories declare the findings, observations, and NESC recommendations compiled in the

report are factually based from data extracted from program/project documents, contractor

reports, and open literature, and/or generated from independently conducted tests, analyses, and

inspections.

NESC Document #: NESC-RP-15-01097 Page #: 7 of 80

3.0 Team List

Name Discipline Organization

Core Team

Daniel Murri NESC Lead LaRC

Jerry Condon Copernicus Development Team Lead JSC

Jacob Williams Copernicus Lead Developer JSC/JETS

Laura Burke Copernicus Development Support GRC

Randy Eckman Copernicus Developer JSC

Anu Kamath Copernicus Developer JSC/JETS

Melissa McGuire Copernicus Development Support GRC

Ravi Mathur OpenFrames Developer GSFC/Emergent

Matthew Ruschmann OpenFrames Developer GSFC/Emergent

Juan Senent Mission Design Analyst, Plug-in Support JPL

Mark Jesick Mission Design Analyst, Plug-in Support JPL

Consultants

Cesar Ocampo Copernicus Creator, Trajectory

Optimization Expert
JSC/Odyssey

Joseph Guinn Integration with Monte JPL

Business Management

John LaNeave Program Analyst LaRC/MTSO

Assessment Support

Linda Burgess Planning and Control Analyst LaRC/AMA

Melinda Meredith Project Coordinator LaRC/AMA

Erin Moran Technical Editor LaRC/AMA

3.1 Acknowledgements

The authors wish to acknowledge those who have beta-tested the Copernicus version 5.0 release:

David E. Lee at the Johnson Space Center (JSC), Amelia Batcha (JSC), Timothy Dawn (JSC),

and Elizabeth Williams (JSC/, a.i. Solutions).

NESC Document #: NESC-RP-15-01097 Page #: 8 of 80

4.0 Executive Summary

NASA’s Copernicus spacecraft trajectory optimization and design analysis tool is a

comprehensive and generalized spacecraft trajectory design and optimization system. It forms

part of the suite of tools used by NASA, industry, and academia to study, design, and execute

spacecraft missions. It is intended to be a tool that evolves and conforms to current trends and

requirements associated with spacecraft trajectory optimization, design, and operation.

Copernicus is capable of solving a wide range of trajectory design and optimization problems.

These include trajectories centered about any celestial body or location in the solar system as

well as trajectories influenced by two or more bodies. Examples include: orbit-to-orbit transfers

about a given planet (or moon or asteroid, etc.), orbit to hyperbolic departure from a given body,

libration point trajectories/halo orbits, distant retrograde orbits, frozen orbits, other restricted

three body model trajectories, Earth-Moon and interplanetary transfers, asteroid and comet

missions, etc. At the NASA Johnson Space Center (JSC), Copernicus is the primary trajectory

optimization tool used for the design of integrated Space Launch System (SLS)/Orion Multi-

Program Crew Vehicle (MPCV) missions in the current NASA Exploration Mission (EM)

launch series.

This report details significant upgrades that were made to Copernicus in support of the NESC

assessment. These upgrades represent major new capabilities that have been added to the tool

for support of a variety of NASA projects and missions. The tool is more powerful, versatile,

and user friendly, and is built on a modern graphical user interface (GUI) toolkit (i.e., PyQt).

This work has resulted in major improvements and new capabilities for the Copernicus tool

including, but not limited to: improvements to the OpenFrames library, used to provide three-

dimensional (3D) OpenGL graphics, visualization capability; a NASA-developed GUI; a cross-

platform set of Copernicus versions that run natively on PC, Mac, or Linux operating systems; an

integrated Python scripting environment for manipulation of individual Copernicus input decks

and automated external assessment and response for active Copernicus runs; an enhanced plugin

technology allowing Copernicus to incorporate unique existing or user developed algorithms;

and a host of architectural modifications and improvements designed to provide a faster, more

user-friendly, more capable experience.

The result of these improvements and capabilities has been multi-faceted. Current primary

NASA programs (i.e., SLS, Orion MPCV) have seen the blossoming of not only single mission

trajectory optimization capability, but also ancillary benefits (e.g., easier to implement, yet more

sophisticated, application to large trajectory scans for design trade studies, and abort space

assessment of established reference mission trajectories).

The continuing enhancement of the visualization has made Copernicus a more visually

immersive tool, particularly for initial design, design modification, trouble-shooting, and

exploration of possible new trajectory options. In some cases, users have been able to visually

construct complex trajectories (e.g., distant retrograde orbit (DRO) with a propagated orbit

lifetime of many decades without need for orbit maintenance).

The OpenFrames Application Programming Interface (API) allows developers to embed real-

time 3D interactive visualizations into their simulations. The Copernicus trajectory design and

optimization tool has used OpenFrames for its visualizations for over a decade. During this

assessment, new features and enhancements to OpenFrames were developed that directly benefit

Copernicus. Examples include support for advanced user interfaces embedded in the 3D scene,

NESC Document #: NESC-RP-15-01097 Page #: 9 of 80

realistic lighting on celestial bodies and spacecraft, hyper-realistic celestial body models that

increase resolution as the viewer approaches the surface, viewing a scene in consumer-grade

virtual reality (VR) hardware (e.g., Oculus Rift or HTC1 Vive), and displaying visualizations in

Copernicus' PyQt-based GUI. Furthermore, because OpenFrames is Open Source Software

(OSS), the advancements made will benefit other NASA applications that use OpenFrames by

increasing software reuse and reducing software development costs. Examples include the

General Mission Analysis Tool (GMAT) and the Virtual Landscapes VR science exploration

tool.

The PyQt GUI has been a significant boost to user efficiency, environment customization, and

situational awareness by providing streamlined workflow and product development.

Additionally, NASA developed this GUI so it has full control over its design, update, and

modification.

The Copernicus version 5.0 improvements have advanced the capability of a single user in the

speed and accuracy of a mission design and the volume of data product that a single user can

generate. This has enhanced the potential and realized trajectory design/optimization capability

of the individual user and allows projects and programs to accomplish mission planning and

analysis with fewer people, and/or expand the scope and depth of analysis for key mission

related program decision-making (e.g., assessment of the scope of abort capability available to a

given reference mission).

In summary, the Copernicus version 5.0 development activity produced significant

improvements in several key areas of tool design and function, which include: improved

visualization, a PyQt-based GUI, expanded and updated Python scripting language

implementation, an enhanced plug-in implementation, and other improvements. The task

produced three independent platform versions (i.e., PC, Mac, and Linux) that run natively on

each respective platform. In addition, the assessment team was able to collaborate with the

Small Business and Innovative Research (SBIR) Program on two topic areas to obtain additional

visualization development beyond the scope of the original task.

1 HTC is a company that makes the Vive model virtual reality headset.

NESC Document #: NESC-RP-15-01097 Page #: 10 of 80

5.0 Assessment Plan

The main purpose of the initial assessment plan was to develop updates and new features for the

NASA Copernicus Trajectory Design and Optimization tool for application to NASA programs

and projects. The goal was to include numerous improvements to provide enhanced mission

optimization/performance, and reduced mission risk for human and science mission spaceflight

programs. The assessment included five major technical items:

1. Mac-based version of Copernicus

2. Linux-based version of Copernicus

3. Plug-ins and scripting improvements

4. GUI and 3D graphics visualization improvements

5. Copernicus software architecture improvements

Each item represented a significant upgrade or set of upgrades to the Copernicus tool. All major

items were completed (details are discussed in Section 6.0). The implementation details of some

items varied somewhat from how they were originally envisioned in the assessment plan. For

example, it was originally envisioned that the new cross-platform (i.e., Mac and Linux) builds of

Copernicus would be accomplished using the existing Winteracter-based toolkit that Copernicus

has used since its initial 1.0 release in 2006. However, upon further investigation, it was decided

that the best path forward, for the various reasons discussed in the following section, was to

replace this toolkit with an open source toolkit (i.e., PyQt). This proved to provide significant

advantages that would not have been possible using the existing toolkit.

6.0 Copernicus Enhancements

A summary of Copernicus enhancements developed by this assessment are discussed in this

section. This updated version of Copernicus is version 5.0. As part of the development process

for version 5.0, some of the updates were distributed in versions 4.5 and 4.6. The current release

of Copernicus (version 4.6) is available at JSC Tech Transfer link,

https://software.nasa.gov/software/MSC-25863-1. The updated version 5.0 will be available at

this link once beta testing is completed. At any time, the latest version of Copernicus can be

obtained by going to this website and clicking on “Request Now!”

6.1 New Copernicus GUI

Background

Until version 4.6, Copernicus used a Fortran GUI toolkit Winteracter. However, as the

capabilities of Copernicus has increased, it has outgrown the available capabilities of

Winteracter, and a change to the PyQt GUI has provided the needed new capability. This section

outlines some of the benefits of the PyQt GUI.

6.2 Benefits of the PyQt GUI

GUI can be modified internally:

The Copernicus version 5.0 GUI was developed using open source Qt and PyQt. Since the GUI

source code was developed by NASA, there is freedom to modify the GUI and a rapid resolution

on bug fixes and incorporation of new features when needed. Previously, if there was a bug or

https://software.nasa.gov/software/MSC-25863-1

NESC Document #: NESC-RP-15-01097 Page #: 11 of 80

feature that was needed inherent to the GUI, the Copernicus developers had to rely on

Winteracter developers to implement a change. In addition, the Python source code for the GUI

will be released with Copernicus, providing users the ability to modify it, if necessary or desired.

Decoupling of core capability and GUI logic:

The GUI code is contained within a set of Python files and is segregated from the core Fortran

code of Copernicus. The Python and Fortran code interact via an API and callback interface

used to pass data back and forth. Previously, the Winteracter API was collocated within the

Fortran code. This was not ideal because the separation of the GUI and core logic was often

unclear. Another benefit of separating the two code bases is that defects that pertain only to the

GUI do not require a Fortran rebuild. It is possible to release patches to fix GUI issues without

users having to fully upgrade the Copernicus software.

Another benefit is that by using the API documentation, a completely different GUI using

something other than PyQt could be developed and used in the future without affecting the

Fortran code. This allows for the realization of potential future concepts, such as web- or mobile

app-based GUI.

Improved usability and layout:

From the outset, the PyQt GUI looks and feels more modern (Figures 6.2-1 through 6.2-5). The

user is able to customize the theme, font and size, layout, and has access to features that were not

available in Winteracter. The following is a list of features that are improved or were

unavailable in Winteracter:

 Highly customizable to user preferences (e.g., themes, fonts, undockable/hideable

widgets, layout of widgets, etc.). A widget is a useful tool or device, including, in the

case of a GUI, a radio button, a slider, a text field, etc.

 Full screen graphics window. In addition, the user can split the GUI window so that the

main GUI is on one monitor, and the 3D graphics are on another monitor.

 Reduced number of dialogs (e.g., previously a certain action needed 3 dialogs, it can now

be done in 2).

 New usability features (e.g., dialog tabbing, click and drag capability, easy access toolbar

buttons and shortcuts, search tool, and undo/redo in certain dialogs).

NESC Document #: NESC-RP-15-01097 Page #: 12 of 80

Figure 6.2-1. PyQt Copernicus GUI

Figure 6.2-2. Old vs New GUI. Users of the old GUI (left) will find the new GUI (right) very

familiar. The new GUI is much more configurable, whereas the old GUI was very static.

NESC Document #: NESC-RP-15-01097 Page #: 13 of 80

Figure 6.2-3. GUI main window shown in brushed metal theme in Constantia, size 8 font.

Figure 6.1-3. GUI Main Window shown in Brushed Metal theme in Constantia, size 8 font.

Tabbed dialog

Undockable widgets

Easy access tool buttons Inline modification and click and drag

capability of segments and plugins.

NESC Document #: NESC-RP-15-01097 Page #: 14 of 80

Figure 6.2-4. Example dialog (Graphics Options) shown in high visibility/contrast dark button

theme, Calibri size 8 font.

Figure 6.2-4. Example dialog (Graphics Options) shown in high visibility/contrast dark button
theme, Calibri size 8 font.

Quick inline selections
Large consistent buttons

and groupbox layouts

throughout all dialogs

NESC Document #: NESC-RP-15-01097 Page #: 15 of 80

Figure 6.2-5. Grids support indefinite number of undos/redos to allow users to correct common

mistakes quickly.

6.3 3D Graphics Upgrades

Copernicus allows users to perform mission design using a variety of cutting-edge algorithms

and design tools. Among these is its 3D interactive visualization interface, which allows users to

view the design space from various viewpoints and adjust visualization parameters. Copernicus’

3D visualizations are provided by the OSS OpenFrames API, which allows simulation

developers to add real-time 3D interactive visualizations without having to write complex 3D

graphics (e.g., OpenGL) code.

The 3D graphics work for this task had two primary goals: (1) improve the OpenFrames API

with various features and capabilities needed by the Copernicus code, and (2) the development,

integration, and testing of OpenFrames into Copernicus’ PyQt-based GUI system. Specific

objectives to accomplish these goals were:

 Demonstrate the use of OpenFrames in a PyQt GUI framework

 Demonstrate 3D object interaction in an OpenFrames scene

 Test OpenFrames in a VR environment, and demonstrate how Copernicus can integrate

this capability

 Implement planet models of higher fidelity than existing spherical models

 Add light sources and materials for more accurate day/night lighting

 Enhance OpenFrames with additional user-definable viewpoints

 Support Copernicus testing on MacOS and Linux, using the PyQt GUI

 General OpenFrames capability and performance enhancements

Figure 6.1-5. Grids support indefinite number of undos/redos to allow users to correct common
mistakes quickly.

Hide data and columns

that have no data or are

not applicable.

Consistent layouts

throughout all dialogs

NESC Document #: NESC-RP-15-01097 Page #: 16 of 80

6.3.1 OpenFrames with Qt and PyQt

Two standalone OpenFrames demonstrations were developed that illustrate the use of

OpenFrames to display a 3D scene in a Qt and PyQt GUI. These demonstrations show how to

embed OpenFrames in a Qt/PyQt-created window, handle the appropriate callbacks that manage

double buffered rendering, and call OpenFrames functions from Python using the developed

OpenFrames/ Simplified Wrapper and Interface Generator (SWIG) interface. The

OpenFrames/PyQt demonstration was updated to display two OpenFrames scenes in two

windows, which enables Copernicus to implement multi-window visualizations.

The next step was adapting this capability into the Copernicus PyQt GUI. One challenge was

moving OpenFrames graphics between windows (e.g., from an embedded into a standalone

window). This is a necessary use-case because components of the new Copernicus PyQt GUI

can be docked within the primary GUI window, or undocked into a standalone window. This

challenge was overcome by restructuring how OpenFrames visualizations are paused and

resumed to deal with the graphics context moving between windows.

6.3.2 3D Object Interaction

A future capability of the Copernicus code is to allow user interaction directly inside the 3D

scene. For example, users could obtain information about spacecraft and trajectories by clicking

on them with the mouse. An important first step was taken towards this capability by

demonstrating object interaction in a standalone OpenFrames demonstration. As shown in

Figure .3.2-1, a prototype feature was developed in OpenFrames that allows multiple GUI

widgets to be added to the 3D scene. Users can interact with these widgets as they would on a

desktop application, and the application can take appropriate steps based on user actions. The Qt

GUI toolkit was used for this work, which provides a broad range of standardized widgets (e.g.,

buttons, sliders, checkboxes, etc.).

Figure 6.3.2-1. Interactive widgets in a 3D scene with OpenFrames. This capability will enable full-

featured in-scene GUI interactivity in future versions of Copernicus.

NESC Document #: NESC-RP-15-01097 Page #: 17 of 80

6.3.2.1 OpenFrames in VR

At the start of this task, OpenFrames had the ability to display 3D visualizations in VR, but there

were several limitations and issues that prevented the capability from being seamlessly

integrated. For example, in certain situations a scene would appear “cut off” near the viewer.

Under this task, all outstanding issues were fixed in the OpenFrames VR framework, and

significant testing was performed on a Windows 10 system, which is the only operating system

that supports VR at this time.

During testing, test cases were first created that used large amounts of data, such as years-long

trajectories or point clouds with billions of points, both of which stress even the most powerful

computing systems. These test cases were then run on the Oculus Rift and HTC Vive VR

headsets (the two main consumer-level VR headsets available at the time), using computers with

a range of VR-capable graphics cards (Nvidia GTX 960, 980, and 1080). It was shown that

OpenFrames can display large numbers of trajectories, as well as trajectories with many points,

with a seamless end-user experience. This VR capability of OpenFrames was then incorporated

into Copernicus, and is currently enabled using a command-line flag.

6.3.2.2 Increased-Fidelity Planet Models

Prior to this task, OpenFrames support for rendering planets was limited to spheres. In this task,

OpenFrames was enhanced to support two additional forms of planet models:

 Ellipsoids: The OpenFrames sphere can be scaled per-axis to produce a triaxial

ellipsoid. This includes the rendering of a latitude-longitude grid overlay using triaxial

geodetic ellipsoid parameters. This is primarily useful for highly-ellipsoidal celestial

bodies such as some asteroids and moons.

 The osgEarth (a C++ geospatial software developer’s kit and terrain engine) API can be

used to display a hyper-realistic Earth model (Figure 6.3.2.2-1), using dynamically-

accessed online resources for terrain (e.g., Shuttle Radar Topography Mission (SRTM))

and textures (e.g., LandSat or Blue Marble). For example, if given SRTM data, then

osgEarth is accurate to 90 m. It can even be given custom data with meter (or less)

accuracy and render that just as seamlessly. osgEarth is an open source virtual globe API

that is license-compatible with OpenFrames and allows users to configure a dynamic

Earth model using extensible markup language (XML) input files. osgEarth can also be

used to render models of other celestial bodies (e.g., the Moon or Mars) given the

appropriate terrain and texture data, and this capability can be incorporated into

Copernicus in future development.

NESC Document #: NESC-RP-15-01097 Page #: 18 of 80

Figure 6.3.2.2-1. An osgEarth-generated globe in OpenFrames. Hyper-realistic terrain and globe
parameters enable Copernicus to properly visualize all mission phases and enhance its usability and

appeal as a mission design tool at NASA.

6.3.2.3 Lighting and Material Support

Support for light sources was added (e.g., the Sun) to OpenFrames. Common light properties

can be customized (e.g., location, and ambient, diffuse, and specular components). Additionally,

customizable materials were added to all sphere objects. This enables specification of

reflectivity and emission components for celestial bodies, and separate day and night textures.

When sunlight is combined with correct materials, the resulting visualizations can be realistic

and most importantly useful to determining lighting conditions for spacecraft and trajectories

(see Figure 6.3.2.2-2).

Currently, the lighting feature can be used only for visual validation of expected lighting

conditions (e.g. to check if the correct side of the spacecraft is lit based on its current

orientation). This is a necessary first step towards more advanced lighting and engineering use-

cases, including:

 Extract the light intensity shining on the rendered spacecraft and translate that to a power

estimate using knowledge of solar panel efficiency

 Implement shadowing, which enables knowledge of when spacecraft parts are blocking

light from reaching solar panels or instrument cameras

These advanced features are not currently available, but the work in this task has laid the

groundwork for capabilities like these to be added as future work.

NESC Document #: NESC-RP-15-01097 Page #: 19 of 80

Figure 6.3.2.2-2. Accurate Sun-based lighting on the Earth and Moon. Apart from its visual appeal,
accurate lighting enables Copernicus to validate day/night visibility conditions for spacecraft.

6.3.2.4 Enhanced Viewpoints

OpenFrames can be used to define multiple cameras that follow various objects in the scene

(Figure 6.3.2.4-1). The ability was added for cameras to track secondary objects while following

the primary object. This allows users to follow an object while always maintaining their view

towards a secondary object of interest. For example, this is useful in cluster flight applications or

to determine eclipsing of an Earth-orbiting satellite.

Figure 6.3.2.4-1. Viewing a secondary spacecraft as seen from the primary spacecraft. To-From
views like this make it possible to visually identify times when line-of-sight communications

between spacecraft are lost.

NESC Document #: NESC-RP-15-01097 Page #: 20 of 80

6.3.2.5 Benefits to NASA Programs

In addition to Copernicus, OpenFrames is used by multiple NASA programs, the GMAT, NASA

Goddard Space Flight Center (GSFC), and multiple applications created by the GSFC VR

Working Group. Since OpenFrames is OSS, its core usage philosophy is that advancements

provided by a project should provide a benefit to other NASA programs and projects. Because

of this philosophy, improvements made in this assessment to OpenFrames have been contributed

to the public OpenFrames code repository.

One OpenFrames benefit is GMAT has incorporated the “Lighting and Material Support” and

“Enhanced Viewpoints” updates. Because of these updates, GMAT’s visualizations show

accurate daytime and nighttime conditions for celestial bodies and spacecraft at any given time.

These updates enable users to define custom camera views that look towards bodies of interest

(e.g., from the Lunar Reconnaissance Orbiter (LRO) to the Moon). This has proven to be a

powerful capability in GMAT, and has increased its desirability for real-time operations in GSFC

Mission Operations Centers.

Another example of the multi-program benefit of this assessment comes from the GSFC Virtual

Landscapes (VL) project, which shows high-density planetary Light Detection and Ranging

(Lidar) data to scientists for virtual exploration. VL overlays the Lidar data on a hyper-accurate

Earth model provided by osgEarth. This capability was made possible by the “Increased-Fidelity

Planet Models” updates to OpenFrames.

6.3.3 Synergy with Other NASA Programs

Emergent Space Technologies has performed considerable research and development on

OpenFrames under NASA Phase II SBIR (i.e., NNX16CG16C). Based on the enhancements

provided by this assessment, the NASA SBIR has enabled a Phase II-X extension of this effort

which will develop additional technologies of interest to Copernicus:

 Development of novel user interfaces inside a 3D scene. This is an extension of the “3D

Object Interaction” task, and will enable advanced Qt-based UI widgets inside the 3D

scene. This will further enhance the ability to obtain information about spacecraft and

trajectories.

 Ability to render accurate shadows of celestial objects on each other and on spacecraft.

Computing shadowing is an advanced component of space mission design, and

visualizing these shadows in Copernicus will allow our users to more quickly determine

shadow-based constraints and adjust their mission designs accordingly.

This is an ideal example of multiple organizations (e.g., NESC and SBIR) collaborating to

provide a significant boost in capability to OpenFrames and all projects that use it, including

Copernicus.

Another example of multi-organization synergy comes from the VL project. VL required 3D UI

widgets inside the VR scene, which is an extension of the “3D Object Interaction” task. VL

supported a Phase III SBIR [ref. 7] to develop and test the prototype developed under this task

using VR hardware including Oculus Rift and HTC Vive. These updates were committed to the

OpenFrames code repository, and are available for Copernicus when interactive UI widget and

VR support are implemented. As before, the benefits of this Phase III SBIR were made possible

by this assessment’s development of a 3D UI prototype, but were supported by the VL project.

NESC Document #: NESC-RP-15-01097 Page #: 21 of 80

6.3.4 MacOS and Linux Testing and Support

The PyQt-based GUI allows Copernicus to support MacOS and Linux with a modern look-and-

feel, and OpenFrames was updated to support these operating systems. Some notable updates

include:

 Support for Retina displays, which are standard on MacBook laptops. Retina displays

have high pixel densities, and Qt handles this by defining a “virtual pixel” that is different

from a physical pixel. This caused OpenFrames to render to only a portion of the desired

3D window. It was found that there is a ratio between virtual and real pixel size that can

be retrieved from PyQt. Applying this ratio to Copernicus allows full support for Mac

Retina displays.

 MacOS handles 3D graphics contexts differently than Windows or Linux, and as a result

resizing the 3D graphics window resulted in graphical issues. It was found that

Copernicus was not using an OpenFrames function that resets the graphics context when

the window is resized, which is required on MacOS. The ability to resize a window was

restored on MacOS after applying this update.

 To run Copernicus on MacOS or Linux, users were required to set environment variables

to appropriate values so that the necessary third-party libraries (e.g., OpenFrames and

OpenSceneGraph) could be found by Copernicus. The ability was developed to encode

this information directly into the Copernicus application during build-time, so that the

application can find the prerequisite libraries without end-user input.

 A Copernicus use-case is running the application remotely on a Linux server, with

visualizations being displayed on the local machine. This requires the ability to forward

the visualizations generated on the server to the user’s machine. OpenFrames was

updated to support this use-case, and performed testing on a NASA remote Linux server.

Formerly, if a large scan was run on a Linux server, the user would have to download the

resultant Copernicus mission files to their local machine to open them. Now this can all

be done on the server. It also means that Copernicus can be used from machines that do

not have Copernicus installed by accessing the server remotely.

6.3.5 Additional OpenFrames Enhancements

In addition to the primary enhancements discussed, the following improvements to OpenFrames’

capabilities and performance were implemented:

 Updated OpenFrames to the most recent build of OpenSceneGraph 3.6.3 (a core

dependency). This contains feature improvements (e.g., text rendering, better multi-core

support, and full OpenGL Core Profile support for MacOS).

 Support for custom fonts and sizes.

 Support for heads-up-display (HUD) style text overlaid on main 3D scene.

 Antialiasing support, in standalone OpenFrames windows and in Qt and PyQt-generated

windows. This feature eliminates jagged line edges and results in a more professional 3D

visualization. It was fundamentally unsupported under the Winteracter GUI, and is one

of many significant Qt GUI improvements.

 Overhauled the OpenFrames time management system. It is simpler to specify the

simulation time and rate during animation with more accurate synchronization with the

wall clock.

NESC Document #: NESC-RP-15-01097 Page #: 22 of 80

 Significant performance enhancement when adding the state and time data points to a 3D

trajectory (e.g., after an integration step). Previously, if Copernicus attempted to add a

point while the OpenFrames rendering thread was processing the trajectory, then

Copernicus would be forced to wait until the processing was completed. With updates,

Copernicus no longer needs to wait on the OpenFrames thread when adding new points,

which has resulted in a significant speedup when adding points to a trajectory.

 Fixed a thread starvation condition when attempting to pause animation. Thread

starvation occurs when multiple computing threads attempt to access the same resource,

but one of them is prevented from doing so for a long time (i.e., is "starved"). In this

case, Copernicus would request OpenFrames to pause animation when loading a new

input deck, but the OpenFrames rendering thread would prevent the request from being

completed. This resulted in Copernicus waiting for OpenFrames to pause animation, and

end-users observed this as Copernicus "freezing" while opening an input deck. This issue

was eliminated by placing higher priority on pause requests than on rendering, so that the

request is processed instantly. This resulted in a significant speedup when loading input

decks.

6.4 Cross-Platform Capability – Linux and Mac Versions

Prior to this task, the full version of Copernicus with the GUI and 3D graphics only existed on

the Windows platform (i.e., version 4.4). A command-line only version existed for Linux, and

no version existed for MacOS. Winteracter was fully functional on Windows, and to a limited

extent on MacOS and Linux where it was built on the outdated OpenMotif GUI toolkit. One of

the inherent benefits of the Qt-based GUI is that the same source code can be built for multiple

platforms. This reduces the amount of source code and facilitates maintainability and full cross-

platform development. In addition, the old GUI required the user to run Copernicus on a virtual

machine application when using a Mac. For the Mac version, the new GUI implementation

eliminates the slow refresh rates of the original Mac GUI and the unreliable operation of

Copernicus on a virtual machine.

With the use of the PyQt toolkit, a fully cross-platform GUI is available. The GUI is fully

functional and has the same behavior across Windows, MacOS and Linux platforms. This

capability allows users to run Copernicus natively on a preferred computer platform. See Figure

6.4-1 for a screenshot of Copernicus running on Linux. Various changes were made to the code

to enable this capability.

NESC Document #: NESC-RP-15-01097 Page #: 23 of 80

Figure 6.4-1. Copernicus running on Linux via the X2Go remote desktop client. The look and

behavior of the tool is identical on Windows, Linux, and MacOS platforms.

6.4.1 Cross Platform Make (CMake)

Additionally, a CMake build system was created to take advantage of its benefits. CMake is a

modern open-source, cross-platform software build system that can be used to dynamically

generate the files needed to build Copernicus for a given platform (e.g., Visual Studio, Make,

Eclipse, etc.). CMake automatically discovers system libraries and toolchains across platforms.

It dynamically generates platform specific build systems that do not have to be under version

control with the source code. This makes portability and initial setup of the build system on any

supported platform easier with no need to maintain platform or build system specific files.

Previously, there were two sets of files that were needed (i.e., Visual Studio files for Windows,

and Make files for Linux), and each set of files had to be under revision control and maintained

separately with redundant information. CMake reduces these files to a set of text files that

contain all the information to generate the build system files. The result is a greatly-simplified

cross-platform development process.

6.4.2 Software Development Practices

This assessment allowed for Copernicus to upgrade to the Git version-control system.

Previously, the Subversion (SVN) version-control system was used. For the Copernicus

development tasks, it was found that Git provided a number of desired development capabilities

over SVN, including better branching and merging features which are useful for simultaneous

development. In addition, a web-based JSC GitLab server is now being used for Copernicus

centralized control and issue tracking of tickets.

NESC Document #: NESC-RP-15-01097 Page #: 24 of 80

6.4.3 Copernicus as a Service

Previous builds of Copernicus were monolithic applications that lacked a user-callable API. The

limitations of this approach became apparent and it was decided to move the tool toward a new

mode where it could be called by other tools as a service. To facilitate this, Copernicus was

rearchitected into a shared library: a Dynamic Link Library (DLL) on Windows, a Dynamic

Library (DYLIB) on MacOS, and a Shared Object (SO) file on Linux. This library contains all

the functionally of Copernicus, which allows the possibility of other systems incorporating this

library to enable access to this functionally. Currently, this mode has been incorporated into the

PyQt GUI. A forward work item is to expand the API to allow for more access to the core

features of Copernicus (e.g., as part of the new Python scripting environment). This approach

will provide a powerful toolset for a variety of applications (i.e., allowing a user-created script

access to the force models, integrators, and ephemerides that are already built-into Copernicus).

6.4.4 Improved Plugins Capabilities

Copernicus, while a capable tool, focuses on numerical trajectory optimization. The plugin

technology allows Copernicus to employ an unlimited number of possible externally-developed

algorithms. For example, one plugin could provide a closed-loop guided trajectory in place of a

Copernicus segment. Copernicus does not inherently contain guidance algorithms, but the plugin

capability allows the user to incorporate a guidance algorithm to assess how the spacecraft might

fly with the onboard flight software in a 3-degree-of-freedom mode. See Figure 6.4.4-1 for a

sample schematic of a Copernicus mission using plugins. Other possible examples could range

from an orbit monitoring trajectory that inserted orbit maintenance burns when needed, complex

Earth entry interface target lines, mass versus delta-velocity (V) equations or algorithms for

assessing spacecraft size with V requirement for preliminary vehicle sizing.

Figure 6.4.4-1. A Copernicus mission is constructed from segments and plugins. Segment are built-

in components, whereas plugins are used to incorporate user-defined algorithms.

A feature was added to Copernicus to specify custom coordinate frames via DLL plugins. This

provides a mechanism for Copernicus to use a user-defined frame. Various other new frame-

related features were added in the version 4.6 to make it easier to use frames for various

purposes, and to enable increased flexibility in Copernicus to match other tool frames. This

feature is being used by the Orion MPCV Program, to match the frames used in Copernicus with

the MPCV flight software and other analysis and operations tools.

NESC Document #: NESC-RP-15-01097 Page #: 25 of 80

During MPCV mission analysis, it was discovered that a significant source of error between

modeling by various engineering teams was the result of inconsistent usage of Earth orientation

parameters. In an effort to unify trajectory modeling, Copernicus needed a way to provide

custom, dynamic Earth orientation modeling beyond what could be provided by Jet Propulsion

Laboratory’s (JPL) Spacecraft, Planet, Instrument, C-Matrix & Events (SPICE) library. A frame

plugin, utilizing the new interface developed during this task, was developed to provide an Earth-

fixed frame via the International Astronomical Union’s (IAU) Standards of Fundamental

Astronomy (SOFA) software library. The plugin parses a JavaScript Object Notation (JSON)

text configuration file that specifies the parameters to use when computing Earth orientation,

providing finer control than previously available. Currently, the plugin provides the ability to

use single constant values for the parameters. A planned enhancement will allow a table of time-

varying parameters to be provided (e.g., directly from files provided by the International Earth

Rotation and Reference Frames Service (IERS)).

Various other plugin-related improvements were made:

 DLL plugins can access the SPICE environment within Copernicus. This allows for

plugins to access data from the SPICE pool (e.g., the ephemeris, reference frames and

gravitational parameters). This feature allows for greater interaction between user-

created plugins and Copernicus.

 A plugin support library was also created that can be used by users when creating DLL

plugins. This library provides various modules that are useful for building DLL plugins

and interfacing with Copernicus. This library makes it easier for users to create plugins,

and will be expanded as future capabilities are added.

 Added plugins to the “groups” feature in Copernicus, which can be used to define

multiple optimization problems in the same mission file. These groups can contain

plugins. This updated “finishes” the groups feature, and provides Copernicus users with

maximum flexibility to define different optimization problems in a mission. Groups are

being used for the MPCV EM-1 mission design.

6.4.5 Software Architecture Improvements

This assessment provided an opportunity for upgrades to the Copernicus software architecture.

Copernicus takes advantage of the strengths of three programming languages (see Figure 6.4.5-

1): Fortran 2008 for the mathematical core of the program, Python for the GUI and scripting, and

C++ for 3D graphics and OpenGL interfacing.

Figure 6.4.5-1. Copernicus takes advantage of the strengths of Fortran 2008, Python, and C++.

NESC Document #: NESC-RP-15-01097 Page #: 26 of 80

Numerous software architecture updates were made as part of this task. Several of the

significant changes were:

 Changes were made to the method that segment data is exported to the files. Output files

are cached internally and generated after the segment is propagated. The output files are

generated faster. For example, on one of the development machines, a 30-day

propagation with data file generation of a low-Earth orbit using an 8x8 gravity model,

using DDEABM (i.e., Adams-Bashforth-Moulton variable step-size integrator) with a

tolerance of 1e-12 took about 9 seconds with version 4.4, now takes about 4 seconds with

version 5.0.

 A new option was added to export the segment data to Hierarchical Data Format (HDF5)

binary format. This is a standard format used for scientific data, and makes it easy to

read the Copernicus-generated data by other tools that support this format.

 New user-friendly tools were added for finding eclipses, performing time

transformations, and performing state transformations.

 A new ramp control law option was added for finite burn engines. This control law uses

cubic spline equations to transition from the initial and final values to the ramp phase.

This feature is being used for SLS/MPCV to model the SLS startup and shutdown

transients.

 Added tri-axial ellipsoid state parameters were incorporated, which are useful for

ellipsoidal-shaped solar system bodies (e.g., asteroids).

 A new feature was added to allow the option of specifying SPICE pool variables in JSON

files. This is an alternative to the native text Planetary Constants Kernel (PCK) file

format supported by SPICE. The file format is a list of the pool variables and their

values. One advantage of Copernicus JSON kernels is they are cross-platform. Normal

SPICE PCK files are not cross-platform, which requires separate Windows and

Mac/Linux versions. Another advantage is that they can be easily created, parsed, and

manipulated by other tools.

 Various new command line options were added, improving the flexibility of using

Copernicus from the command line.

Numerous other features and improvements were made. See the version 4.5 and 4.6 Copernicus

release memos in Appendices A and B, respectively for details of these changes.

6.4.6 Enhanced Python Scripting Capabilities

The Copernicus capabilities are enhanced when matched with the ability to automate execution

and to solve problems in large batches. To that end, a package called CopPy was developed,

which provided a Python interface to Copernicus. However, CopPy only allowed modification

of existing items in a Copernicus mission file (i.e., input deck). CopPy could not be used to

construct missions (or individual trajectory segments from scratch, or add new elements

(e.g., finite burns) that were not in the original file. The package provided access to a limited

subset of input deck configuration values and actions. While a variety of workarounds to these

limitations were developed during practical use, a more robust and complete interface providing

all Copernicus options was desired. RoboCopPy, which was a new Python package for

interfacing with Copernicus, was developed to satisfy this need.

NESC Document #: NESC-RP-15-01097 Page #: 27 of 80

The new package is an object-oriented Python approach to the problem. GUI fields have been

organized into classes that correspond to familiar dialogs. The classes provide a complete

mapping of every option and field available in each GUI dialog. This approach makes

developing scripts easier. By nature of its object-oriented design, RoboCopPy allows

construction of complete input decks by adding class instances to various collections. Figure

6.4.6-1 is a simplified example of code to create an input deck in Python that represents a

prototypical International Space Station (ISS) trajectory.

import robocoppy as rcpy

iss = rcpy.Ideck()

seg = rcpy.Segment("ISS")

seg.mass.m0mm.value = 400000

For "generic" quantities, you don't need to specify the `.value`.

seg.time.t0 = 0

j2k = rcpy.Frame()

j2k.frametype_id = rcpy.CopFrameEnum.j2000

j2k.framecenter_id = rcpy.FrameCenter.main

j2k.mainbody = rcpy.SpiceBodyEnum.earth

s = rcpy.State()

s.frame = j2k

p = s.param

p.params_id = [rcpy.Param1Enum.sma, rcpy.Param2Enum.ecc,

 rcpy.Param3Enum.inc, rcpy.Param4Enum.raan,

 rcpy.Param5Enum.aop, rcpy.Param6Enum.ta]

p.angle_unit = rcpy.AngleUnits.deg

s.sma = 6778.0

s.ecc = 0.001

s.inc = 51.66

s.raan = 276.838

s.aop = 69.6

s.ta = 189.3489

seg.state = s

iss.segments = [seg]

iss.save('iss.ideck')

Figure 6.4.6-1. Simplified example of code to create an input deck in Python that represents a
prototypical International Space Station (ISS) trajectory.

A useful feature shown in Figure 6.4.6-1 is the ability to refer to state elements by user-friendly

names (e.g., “sma”), once the state parameterization has been configured. State elements may be

referenced by index (e.g., s.state[0].value for the first state element).

Among the most powerful features of RoboCopPy is the implementation of segment

references. Throughout an input deck, values can be inherited between segments or constrained

by references to other segments. When loading an input deck into RoboCopPy, these references

are converted to Python object references. These references are converted to their Copernicus

NESC Document #: NESC-RP-15-01097 Page #: 28 of 80

segment numbers when the final input deck is saved. This allows for reordering of segments

without needing to manually update numeric references throughout the file. Segment references

can optionally be made using segment names which are automatically resolved to the appropriate

Python object reference. Assuming all segment names in the input deck are unique, this provides

a useful way to refer to segments without needing to know their location in the sequence.

Because a RoboCopPy input deck is a collection of segment object references, multiple input

decks can refer to the same segment object in memory, and allowing for easy reuse. An example

demonstrating these references is shown in Figure 6.4.6-2.

>>> from robocoppy import Ideck, Segment

>>> seg_a = Segment('Segment A')

>>> seg_b = Segment('Seg B')

>>> seg_c = Segment('Seg C')

>>> seg_d = Segment('Seg D')

>>> seg_b.time.t0.inherit_seg = seg_a # not ambiguous!

>>> seg_d.mass.m0mm.inherit_seg = 1 # this is ambiguous...

>>> x = Ideck()

>>> x.segments = [seg_a, seg_d, seg_b]

>>> # now this will refer explicitly to seg_a

>>> seg_d.mass.m0mm.inherit_seg.parent = x.segments

>>> seg_d.mass.m0mm.inherit_seg.segment.name

'Segment A'

>>> y = Ideck()

>>> y.segments = [seg_c, seg_a, seg_d]

>>> seg_c.sc_data.dry_mass.inherit_seg = 'Segment A' # this is ambiguous

>>> y.save('foo.ideck') # now this refers explicitly to seg_a

>>> seg_c.sc_data.dry_mass.inherit_seg.segment.name

'Segment A'

Figure. 6.4.6-2. Example of RoboCopPy input deck segment references.

In cases where a new segment may be spliced into an existing trajectory, it may be necessary to

update segment references in batch from one segment to another. Several methods exist to

facilitate this action. The Segment class provides methods replace_inherits_with_seg,

to replace all references within that segment from one to another, or

replace_list_inherits_with_me, which replaces all references in a provided list to a

given segment with a reference to the current one.

These features, among other enhancements, make RoboCopPy a superior method for creating,

manipulating, and running Copernicus input decks in scripts. The RoboCopPy beta version has

facilitated the development of complex MPCV EM-1 abort trajectory studies with scripts to

generically model various scenarios. The originally planned effort to generate the complete set

of scenarios for the study would have taken many months to write scripts full of workarounds to

the limitations of CopPy. The advantages of RoboCopPy reduced the time to complete and the

team size required to develop the scenarios by nearly half.

It is envisioned the RoboCopPy Python interface will be merged with the Python (PyQt) GUI.

This could provide significant new capabilities (e.g., real-time manipulation of the mission by

the user from within the GUI). This could be enabled by a set of built-in or user-defined macros,

which are Python scripts that operate on the current mission and update the GUI accordingly.

This could make it easier to perform repetitive tasks, and adding new capabilities to the tool via

Python-based GUI plugins.

NESC Document #: NESC-RP-15-01097 Page #: 29 of 80

6.4.7 Bug Fixes

As part of the development activity, numerous bugs were fixed. For details on these fixes, see

the 4.5 and 4.6 release memos in Appendices A and B. As part of this task, the version 5.0 was

also beta tested by users at various NASA Centers.

7.0 Summary

The purpose of this assessment was to develop updates and new features for the NASA

Copernicus Trajectory Design and Optimization tool for application to NASA programs and

projects. These updates significantly improve the ability to design and optimize complex

trajectories over multiple trajectory phases and allow the use of unique vehicle-specific

guidance, control, and trajectory strategies and constraints, and the creation of an almost

unlimited number of unique user-defined capabilities. Products of the assessment are major

upgrades to the Copernicus tool that provide significant enhancements and effectiveness to the

user. The plug-in technology will open Copernicus to compatibility with an unlimited possibility

of user-defined algorithms that bi-directionally interact with the tool. The platform availability

of Copernicus has been expanded from PC-only to include Mac- and Linux-based operating

systems.

Products of this assessment will likely be used by Agency organizations, NASA-associated

contractors, and academia to provide potential benefit to all analysts, project leads, and managers

involved in trajectory design and optimization. The assessment currently affects multi-Center

projects and programs (e.g., Orion MPCV, SLS, and the Lunar Orbital Platform Gateway).

Additionally, it affects numerous government, commercial, and/or academic programs,

proposals, and studies requiring trajectory design and optimization.

To obtain the latest version of Copernicus, and the user guide, go to:

https://software.nasa.gov/software/MSC-25863-1 and click on “Request Now”. The updated

Copernicus User Guide is also accessible via hotlinks within the Copernicus GUI.

8.0 Findings, Observations, and NESC Recommendations

The following findings were identified:

8.1 Findings

F-1. The PyQt GUI provides significant new capability and increased usability of the

Copernicus tool.

F-2. The 3D graphics improvements (e.g., OSS OpenFrames) provide increased capabilities to

Copernicus. These same upgrades can be applied to other NASA tools (e.g., a current

GMAT development activity includes integration of OpenFrames graphics capability).

F-3. The new RoboCopPy Python scripting interface provides significant new capability for

scripting Copernicus.

F-4. Plugin improvements increase the ability of Copernicus to interoperate with other tools

and provided an ability to match external models used in analysis and operations.

F-5. The use of standard data formats (e.g., HDF5 and JSON) greatly improves the ability of

Copernicus to interoperate with other NASA analysis tools.

https://software.nasa.gov/software/MSC-25863-1

NESC Document #: NESC-RP-15-01097 Page #: 30 of 80

8.2 Observations

The following observations were identified:

O-1. Copernicus is used in many projects across the Agency, including being the primary

trajectory optimization tool used in the integrated SLS/MPCV missions for pre-mission

design and has been identified as one of the software tools to be used in mission

operations.

O-2. The beta release of Copernicus 5.0 has facilitated the development of complex MPCV

EM-1 abort trajectories and reduced the time to complete and the team size required to

develop the scenarios by nearly half.

O-3. NASA Glenn Research Center (GRC) users have tested the beta release of the

Copernicus GUI and found that it provides a fast and reliable trajectory modeling tool

that runs on Macs, eliminating the slow refresh rates of the original Mac GUI and the

unreliable operation of Copernicus on Virtual Machine. This has resulted in a reduction

in the time required to develop or modify trajectory models in Copernicus and has greatly

increased usability. The beta version is being used for trajectory analysis supporting

NASA GRC’s Compass Team and the Mars Study Capability Team.

O-4. There are continued demands for enhanced existing capability and adding new

capabilities in Copernicus.

8.3 NESC Recommendations

The following NESC recommendations were identified and directed towards Copernicus users:

R-1. Upgrade to Copernicus version 5.0 to take advantage of new features and enhancements.

(F-1 through F-5)

10.0 Other Deliverables

No unique hardware, software, or data packages, outside those contained in this report, were

disseminated to other parties outside this assessment

12.0 Recommendations for NASA Standards and Specifications

No recommendations for NASA standards and specifications were identified as a result of this

assessment.

13.0 Definition of Terms

Corrective Actions Changes to design processes, work instructions, workmanship practices,

training, inspections, tests, procedures, specifications, drawings, tools,

equipment, facilities, resources, or material that result in preventing,

minimizing, or limiting the potential for recurrence of a problem.

Finding A relevant factual conclusion and/or issue that is within the assessment

scope and that the team has rigorously based on data from their

independent analyses, tests, inspections, and/or reviews of technical

documentation.

NESC Document #: NESC-RP-15-01097 Page #: 31 of 80

Lessons Learned Knowledge, understanding, or conclusive insight gained by experience

that may benefit other current or future NASA programs and projects.

The experience may be positive, as in a successful test or mission, or

negative, as in a mishap or failure.

Observation A noteworthy fact, issue, and/or risk, which may not be directly within the

assessment scope, but could generate a separate issue or concern if not

addressed. Alternatively, an observation can be a positive

acknowledgement of a Center/Program/Project/Organization’s operational

structure, tools, and/or support provided.

Problem The subject of the independent technical assessment.

Proximate Cause The event(s) that occurred, including any condition(s) that existed

immediately before the undesired outcome, directly resulted in its

occurrence and, if eliminated or modified, would have prevented the

undesired outcome.

Recommendation A proposed measurable stakeholder action directly supported by specific

Finding(s) and/or Observation(s) that will correct or mitigate an identified

issue or risk.

Root Cause One of multiple factors (events, conditions, or organizational factors) that

contributed to or created the proximate cause and subsequent undesired

outcome and, if eliminated or modified, would have prevented the

undesired outcome. Typically, multiple root causes contribute to an

undesired outcome.

Supporting Narrative A paragraph, or section, in an NESC final report that provides the detailed

explanation of a succinctly worded finding or observation. For example,

the logical deduction that led to a finding or observation; descriptions of

assumptions, exceptions, clarifications, and boundary conditions.

14.0 Acronyms and Nomenclature List

3D Three-Dimensional

API Application Programming Interface

CMake Cross Platform Make

COTS Commercial-Off-The Shelf

DDEABM Adams-Bashforth-Moulton variable step-size integrator

DLL Dynamic Link Library

DRO Distant Retrograde Orbit

DYLIB Dynamic Library (MacOS)

EM-1 Exploration Mission 1

GMAT General Mission Analysis Tool

GRC Glenn Research Center

GSFC Goddard Space Flight Center

GUI Graphical User Interface

HDF5 Hierarchical Data Format (version 5)

HUD Heads-Up-Display

NESC Document #: NESC-RP-15-01097 Page #: 32 of 80

IAU International Astronomical Union

IERS International Earth Rotation and Reference Frames Service

ISS International Space Station

JPL Jet Propulsion Laboratory

JSC Johnson Space Center

JSON JavaScript Object Notation

LaRC Langley Research Center

LRO Lunar Reconnaissance Orbiter

MPCV Multi-Purpose Crew Vehicle

NASA National Aeronautics and Space Administration

OSS Open Source Software

PCK Planetary Constants Kernel

PyQt Python Interface to Qt

SBIR Small Business and Innovative Research

SLS Space Launch System

SO Shared Object

SOFA Standards of Fundamental Astronomy

SPICE Spacecraft, Planet, Instrument, C-Matrix & Events

SRTM Shuttle Radar Topography Mission

SVN Subversion

SWIG Simplified Wrapper and Interface Generator

UI User Interface

VL Virtual Landscapes

VR Virtual Reality

XML Extensible Markup Language

15.0 References

1. J. Williams, “Copernicus Version 4.5,” JSC Engineering, Technology and Science (JETS)

Contract, Technical Brief JETS-JE23-17-AFGNC-DOC-0066, December 12, 2017.

2. J. Williams, “Copernicus Version 4.6,” JSC Engineering, Technology and Science (JETS)

Contract, Technical Brief JETS-JE23-18-AFGNC-DOC-0009, April 20, 2018.

3. C. Ocampo, “An Architecture for a Generalized Trajectory Design and Optimization

System,” in Proceedings of the Conference: Libration Point Orbits and Applications (G.

Gómez, M. W. Lo, and J. J. Masdemont, eds.), pp. 529–572, World Scientific Publishing

Company, June 2003. Aiguablava, Spain.

4. J. Williams, R. D. Falck, and I. B. Beekman. “Application of Modern Fortran to Spacecraft

Trajectory Design and Optimization,” 2018 Space Flight Mechanics Meeting, AIAA SciTech

Forum, (AIAA 2018-1451).

5. J. Williams, “A New Plugin Architecture for the Copernicus Spacecraft Trajectory

Optimization Program,” AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado,

August 2015. AAS 15-606.

6. J. Williams, J. S. Senent, D. E. Lee, “Recent Improvements to the Copernicus Trajectory

Design and Optimization System,” Advances in the Astronautical Sciences, 2012.

7. SBIR Contract 80NSSC18P0728. The COR was Thomas Grubb, NASA GSFC,

thomas.g.grubb@nasa.gov.

mailto:thomas.g.grubb@nasa.gov

NESC Document #: NESC-RP-15-01097 Page #: 33 of 80

Appendices

A. Copernicus Release 4.5.0

B. Copernicus Release 4.6.0

NESC Document #: NESC-RP-15-01097 Page #: 34 of 80

Appendix A. Copernicus Release 4.5.0

NESC Document #: NESC-RP-15-01097 Page #: 35 of 80

NESC Document #: NESC-RP-15-01097 Page #: 36 of 80

NESC Document #: NESC-RP-15-01097 Page #: 37 of 80

NESC Document #: NESC-RP-15-01097 Page #: 38 of 80

NESC Document #: NESC-RP-15-01097 Page #: 39 of 80

NESC Document #: NESC-RP-15-01097 Page #: 40 of 80

NESC Document #: NESC-RP-15-01097 Page #: 41 of 80

NESC Document #: NESC-RP-15-01097 Page #: 42 of 80

NESC Document #: NESC-RP-15-01097 Page #: 43 of 80

NESC Document #: NESC-RP-15-01097 Page #: 44 of 80

NESC Document #: NESC-RP-15-01097 Page #: 45 of 80

NESC Document #: NESC-RP-15-01097 Page #: 46 of 80

NESC Document #: NESC-RP-15-01097 Page #: 47 of 80

NESC Document #: NESC-RP-15-01097 Page #: 48 of 80

NESC Document #: NESC-RP-15-01097 Page #: 49 of 80

NESC Document #: NESC-RP-15-01097 Page #: 50 of 80

NESC Document #: NESC-RP-15-01097 Page #: 51 of 80

NESC Document #: NESC-RP-15-01097 Page #: 52 of 80

NESC Document #: NESC-RP-15-01097 Page #: 53 of 80

NESC Document #: NESC-RP-15-01097 Page #: 54 of 80

NESC Document #: NESC-RP-15-01097 Page #: 55 of 80

NESC Document #: NESC-RP-15-01097 Page #: 56 of 80

NESC Document #: NESC-RP-15-01097 Page #: 57 of 80

NESC Document #: NESC-RP-15-01097 Page #: 58 of 80

NESC Document #: NESC-RP-15-01097 Page #: 59 of 80

NESC Document #: NESC-RP-15-01097 Page #: 60 of 80

NESC Document #: NESC-RP-15-01097 Page #: 61 of 80

NESC Document #: NESC-RP-15-01097 Page #: 62 of 80

NESC Document #: NESC-RP-15-01097 Page #: 63 of 80

NESC Document #: NESC-RP-15-01097 Page #: 64 of 80

NESC Document #: NESC-RP-15-01097 Page #: 65 of 80

NESC Document #: NESC-RP-15-01097 Page #: 66 of 80

NESC Document #: NESC-RP-15-01097 Page #: 67 of 80

NESC Document #: NESC-RP-15-01097 Page #: 68 of 80

NESC Document #: NESC-RP-15-01097 Page #: 69 of 80

Appendix B. Copernicus Release 4.6.0

NESC Document #: NESC-RP-15-01097 Page #: 70 of 80

NESC Document #: NESC-RP-15-01097 Page #: 71 of 80

NESC Document #: NESC-RP-15-01097 Page #: 72 of 80

NESC Document #: NESC-RP-15-01097 Page #: 73 of 80

NESC Document #: NESC-RP-15-01097 Page #: 74 of 80

NESC Document #: NESC-RP-15-01097 Page #: 75 of 80

NESC Document #: NESC-RP-15-01097 Page #: 76 of 80

NESC Document #: NESC-RP-15-01097 Page #: 77 of 80

NESC Document #: NESC-RP-15-01097 Page #: 78 of 80

NESC Document #: NESC-RP-15-01097 Page #: 79 of 80

NESC Document #: NESC-RP-15-01097 Page #: 80 of 80

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other

aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information

Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other

provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT

 NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF

 ABSTRACT

18. NUMBER

 OF

 PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

01/17/2019 Technical Memorandum

Improvements to the Copernicus Trajectory Design and Optimization System

for Complex Space Trajectories

Murri, Daniel G.; Condon, Gerald L.; Williams, Jacob; Kamath, Anubhav H.;

Eckman, Randy A.; Mathur, Ravishankar

NASA Langley Research Center

Hampton, VA 23681-2199 L-20994 NESC-RP-15-01097

National Aeronautics and Space Administration

Washington, DC 20546-0001

869021.05.05.02.15

NASA

NASA/TM-2019-220247

Unclassified - Unlimited

Subject Category 16 Space Transportation and Safety

Availability: NASA STI Program (757) 864-9658

The purpose of this assessment was to develop updates and new features for the NASA Copernicus Spacecraft Trajectory

Design and Optimization analysis tool (version 5.0) for application to NASA programs and projects. This report details

significant upgrades that were made to Copernicus in support of the NESC assessment. These upgrades represent major

new capabilities that have been added to the tool for support of a variety of NASA projects and missions.

Copernicus, Trajectories; Space Launch System; Graphical User Interface; Python Interface to Qt

U U U UU 85

STI Help Desk (email: help@sti.nasa.gov)

(443) 757-5802

