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Abstract: This paper presents an integrated reliability and physics-based risk modeling approach for 
assessing human spaceflight systems. The approach is demonstrated using an example, end-to-end risk 
assessment of a generic crewed space transportation system during a reference mission to the 
International Space Station. The behavior of the system is modeled using analysis techniques from 
multiple disciplines in order to properly capture the dynamic time- and state- dependent consequences 
of failures encountered in different mission phases. We discuss how to combine traditional reliability 
analyses with Monte Carlo simulation methods and physics-based engineering models to produce loss-
of-mission and loss-of-crew risk estimates supporting risk-based decision-making and requirement 
verification. This approach facilitates risk-informed design by providing more realistic representation 
of system failures and interactions; identifying key risk-driving sensitivities, dependencies, and 
assumptions; and tracking multiple figures of merit within a single, responsive assessment framework 
that can readily incorporate evolving design information throughout system development. 
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1.  INTRODUCTION 
 
Over the years, NASA has developed a working knowledge and body of standards to guide both the 
design and the evaluation of safe human space flight systems. These include specific requirements on 
procedures and best practices in addition to quantitative mission risk requirements. As an example, 
NASA’s Commercial Crew Program (CCP) has identified quantitative requirements for loss-of-
mission (LOM) and loss-of-crew (LOC) probabilities that establish safety and mission success 
metrics. To analytically verify these requirements before a system is operational, NASA programs 
often depend on probabilistic safety analysis (PSA). 
 
In addition to requirement verification, PSA techniques can also be incorporated into the design 
process to optimize safety and mitigate critical risk drivers throughout system development. The 
quantitative safety and reliability information from PSA enables a risk-informed design process that 
includes risk as a design metric along with mass, performance, and cost. By injecting such information 
into the design process, the post-facto assessment of a system’s LOC/LOM probabilities is avoided, 
and actionable insights are provided at a point in the program where changes can still be impactful. 
 
Traditionally, PSA, or probabilistic risk assessment (PRA), is performed using logical probability 
models [1]. Most commonly used are the event tree/fault tree (ET/FT) models that have been 
employed for systems such as the Space Shuttle and International Space Station (ISS). These methods 
are effective at combining failure probabilities into a series of top events or specified end-states. More 
recently, simulation methods have been employed to extend the traditional methods such that physical 
factors and system dynamics are inserted directly into the risk models [2]. The goal of these 
approaches is to more accurately represent the interactions among on-board systems and between the 
system and its operating environment. Whereas classical ET/FT approaches strive to generate a very 
precise solution to an approximate, static problem, simulation methods may be able to better represent 
a system’s fully interactive dynamics by producing an approximate solution to a more realistic 
problem. The ultimate choice of the “best” analysis approach is determined by the problem specifics, 
questions being addressed by the analysis, resources available, and desired level of precision. 
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This paper presents an example of a simulation-based risk model for a human spaceflight mission. The 
model blends engineering analyses commonly used during the design process with traditional 
reliability approaches to produce LOM and LOC estimates that can be used for risk-based decision-
making and requirement verification. The example illustrates how the simulation model can produce 
top-level risk estimates, such as LOC/LOM, while also representing the physical aspects of the system 
that often drive the risk and are meaningful to system designers. In addition, the model can track 
multiple figures of merit (FOMs), time-based risk intensities, and system interactions within the same 
assessment. This paper utilizes a generic space transportation system to illustrate these capabilities. 
 
2.  EXAMPLE PROBLEM 
 
An example mission for the end-to-end risk model was developed with similar mission requirements 
as those defined for the CCP [3]. The baseline mission includes delivering four astronaut 
crewmembers and their equipment to the ISS and returning them to Earth at least twice a year. A 
fictitious, generic human spaceflight launch vehicle (LV) and spacecraft (SC), shown in Figure 1, 
were used for the reference mission in order to illustrate the risk modeling process with representative 
design and performance data [4]. The launch vehicle is a two-stage, liquid-propellant rocket with four 
liquid oxygen LOX/RP-1 engines on the first stage and two LOX/hydrogen engines on the upper 
stage. The spacecraft is a capsule with a five-meter diameter and a tractor-type ascent launch abort 
system, sized to support the crew for seven days in free-flight or to dock with ISS for a six-month stay. 
All risk data and physical models in this paper are based on this generic space architecture, which is 
presented not as a closed architecture, but rather as an example architecture used to demonstrate the 
risk assessment process. The baseline mission timeline for this architecture was assumed to include a 
9.25-minute ascent phase before separation of the spacecraft from the upper stage, a one-day flight to 
ISS, a six-month stay docked to the ISS with weekly one-hour spacecraft checkouts, and a four-hour 
entry, descent, and landing (EDL) phase, as shown in Figure 2. 
 
The top-level LOC/LOM metrics were computed for this example mission and the leading risk drivers 
called out. In addition, the time-based risk intensity was produced for the system. Key interactive 
examples where dynamics and physics are first-order risk drivers are shown. All of this information 
was produced by a single model, removing the need for multiple risk models to track specific FOMs. 
 

Figure 1: Launch vehicle and spacecraft specifications [4]. 
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Figure 2: Nominal mission timeline for sample reference mission. 
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3.  DYNAMIC MISSION RISK MODEL 
 
3.1. Risk models and required data 
 
A space launch system travels through multiple environments with vastly different timescales, and the 
integrated risk model was developed with these variations in mind. Table 1 summarizes some of the 
key data required for a typical mission risk assessment model. The data covers multiple science and 
engineering disciplines, including vehicle design, blast physics, trajectory analysis, propulsion system 
performance, aerodynamic and aerothermal analyses, environment characterization, material 
responses, and reliability engineering. Traditionally, these modeling methods are used in the design 
process with an emphasis on optimizing system performance or defining a feasible system. However, 
the outputs from each of these analysis disciplines can also be focused on understanding system 
performance during off-nominal conditions or degraded states to provide valuable risk information for 
both designers and decision makers. In this way, success-based design models can be used to populate 
the risk model. 
 

Table 1: Summary list of data requirements for a typical mission risk model. 

 

 Ascent Phase On-orbit Phase EDL Phase 
Launcher design and reliability X   
Spacecraft design and reliability X X X 
Integrated stack design and reliability X   
Trajectory data X  X 
Aerodynamic environments X  X 
Aerothermal heating environments   X 
Space environments  X  
Orbital and deorbit maneuvers  X  
Abort conditions X   
Material response X X X 
Concept of operations and contingencies X X X 
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In order to best represent the space exploration system, the dynamic mission risk model uses a hybrid 
approach that integrates the outputs from each of these disciplines to calculate estimates of key system 
metrics. Figure 3 contains an overview of the model’s data structure. At the top of the model are the 
elements that represent the dynamic behavior of the system and track system-level parameters of 
interests. Examples of such dynamics include physical failure propagation, system failure response, 
and the ultimate evolution of hazardous failure environments. The dynamic simulation elements are 
only incorporated to the level required to resolve dynamics that drive the overall assessment. Below 
these dynamic levels are static reliability elements that seed the dynamic simulation with likelihood 
information. These probabilities are often generated by representing components using traditional FT-
like approaches. As a result, the simulation model handles the system dynamics and the full FT cut-
sets while the static aspects live below the dynamics and can be incorporated back into the mission 
results through post-processing. 
 

Figure 3: Example of multi-disciplinary, hierarchical failure data. 
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Starting at the bottom of Figure 3, representative fault trees can be seen to represent the component 
reliabilities. FT math is utilized when there are no important system dynamics or when a collective set 
of failures has a similar effect on the simulation, i.e. the simulation can’t tell the difference between 
failure types in the tree. This can occur when the system itself is accurately represented using static 
methods, when the data used to characterize the subsystem does not support dynamics, or when design 
fidelity is limited and a static representation serves as a reasonable proxy until additional information 
becomes available. Though the data in the trees may be static, the simulation can easily incorporate 
such data in a time-dependent way. For example, the simulation can apply a time-based duty-cycle 
that queries the tree data only during certain phases in the mission. Also, though FTs are often used to 
describe component reliability, the basic simulation elements can represent physical elements as well. 
For example, the current model incorporates offline EDL assessments, such as the one described in 
[5], at the basic simulation element level. This does not mean the EDL results are imported as a single 
probability, but that the results can be represented parametrically by a single element. Figure 4 shows 
a sample sub-element tree for the spaceraft’s pressure control system (PCS), based on component data 
from the master equipment list. 
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Figure 4: Pressure control system sub-element fault tree. 

 
 
Moving upward through Figure 3, the level above the fault trees and basic simulation elements 
represents failure propagation through the system. The lowest levels, described above, determine the 
probability of a failure initiating.† The middle levels of the model represent the translation of the 
initiators into cases that threaten the mission or crew. One such translation is performed by mapping 
the initiators to subsequent failure environments. This approach is relatively easy to implement and 
can be very effective in trade studies where a range of failure paths are to be considered. Consider the 
possible failure modes of the launch vehicle as shown in Figure 5 (from Ref. [6]). Each failure can 
progress down a number of paths, leading to a range of failure environments. The propagation table 
allows these “branches” to be assessed using offline models whose results can be directly incorporated 
into the mission risk model. Should the propagation analysis be updated, or have different assumptions 
applied, the values in the table can be updated without any change to the mission risk model. For more 
details on this approach, see Ref. [6]. 
 

Figure 5: Sample propagation table for launch vehicle failure modes [6]. 

 
                                                
† Though the example considers the elements at the bottom of the model to represent failures that trigger LOM, 
they can just as easily represent system failures that represent a loss of redundancy. Loss of redundancy can be 
mitigated by the design of the system, can trigger an abort in cases where the degraded system is considered too 
risky for mission continuance, or can represent a true loss of system function. In all cases, the dynamic 
simulation model can manage the occurrence and associated response. 
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While the previous example represents different discrete propagation paths resulting from a launch 
vehicle failure, continuous failure propagation models can also be incorporated. Consider a seal leak 
due to one of the PCS hatches shown in Figure 4. The simple, worst-case assumption would be that 
any PCS failure would lead to LOC immediately, but this assumption would be excessively 
conservative and drive the risk of the subsystem. To refine this assumption, the actual cabin 
environment can be modeled to allow the spacecraft to abort from orbit and return the crew safely. 
Reference [7] describes such a model, which has been incorporated in this assessment. With this 
additional modeling incorporated, the different leakage failure modes can now map to specific 
physical responses. For example, a valve that has failed open resulting in a leak of cabin pressure will 
not lead to immediate LOC. Instead, the time-to-LOC is predicted based on various mission 
parameters such as the size of the leak, available pressurant (itself a function of mission time and 
state), leak detection capability, and time required to safely depart ISS and return to Earth. The curves 
from [7] are shown in Figure 6 and represent parameterized responses to cabin leakage. The mission 
model selects from the curves, based on the appropriate pre-failure mission state, and determines a 
resulting time-to-LOC given a cabin leak. Again, because the physics of the failure propagation are 
imbedded in the dynamic mission risk model, changes to the design, abort policy, crew protection 
using pressure suits, or any number of other factors can be directly reflected in the analysis without re-
architecting the model. 
 

Figure 6: Example LOC hazard data for various cabin leakage scenarios [7]. 

  
 
Sometimes the physics itself is responsible for the initiator. For example, consider micrometeoroid 
orbital debris (MMOD) threats to the spacecraft in orbit. An analysis of the MMOD threat was 
performed using the BUMPER II code developed at NASA Johnson Space Center [8]. BUMPER II 
predicts the probability of MMOD penetrating the spacecraft in orbit, which is used to populate a basic 
simulation element in the model. If penetration occurs, then one would assess the damage done to 
underlying systems to determine the criticality of the impact. If the pressure vessel was compromised, 
the cabin physics model could be employed to determine the time-to-LOC, or the time the spacecraft 
could remain pressurized such that alternate action could be taken. In the current model, any full 
spacecraft penetration when docked to the ISS is assumed to result in LOM if unoccupied, or LOC if 
occupied. Of more interest is the case where an MMOD strike does not fully penetrate but causes 
damage to the thermal protection system (TPS). In this case, the impact damage is passed to the EDL 
element, described above, and the dynamic simulation model computes the LOC probability based on 
the heating environment, location of the damage, TPS material response, and temperature limits of the 
spacecraft structure. All of this is handled within the mission model automatically. 
 
All of these examples begin with an off-nominal situation that initiates a potentially fatal chain 
reaction. The estimation of LOC depends on the ability of the space transportation system to respond 
in a manner that a) inhibits the failure propagation so that no threatening failure environment develops, 
b) protects the crew in spite of the failure environment, or c) can move the crew safely away from the 
hazard. In the second and third cases, the evolution of the failure environment must be characterized. 
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Much work has been done to estimate the blast overpressure, fireball, and debris environments 
resulting from an explosive system failure [9,10,11]. The current risk model incorporates these 
hazardous environments using parameterized tables of results computed outside of the risk model. In 
this way, the best estimates of the hazardous environments’ impact on the system are incorporated into 
the model and the resulting failure probabilities are computed using the state of the launch vehicle and 
spacecraft at the time of the failure. 
 
A short list of the physic-based models needed to represent failure and propagation conditions 
encountered in a space mission risk model includes: 

• LOC probability due to blast overpressure as a function of mission elapsed time (MET) and 
amount of abort warning time available. 

• LOC probability due to debris striking the crewed cabin as a function of MET and amount of 
abort warning time available. 

• Time to structural breakup of the launch vehicle in a loss-of-control situation, as a function of 
MET and failure mode (rapid versus slow control loss). 

• Probability of penetration and partial penetration from MMOD as a function of TPS thickness 
and time in orbit. 

• LOC probabilities due to TPS bondline temperature exceedance as a function of TPS 
thickness and TPS stack-up. 

• Time-to-LOC cabin environment conditions as a function of failure severity, MET, and abort 
from orbit duration. 

 
At the top of the model hierarchy shown in Figure 3 are the elements that track the failures, 
mitigations, and responses of the system. These top elements determine whether LOC, LOM, or any 
other simulation parameter of interest occurs. An attribute of simulation techniques is that multiple 
FOMs can be tracked within a single simulation. For example, one model can estimate LOC, LOM, 
failure time/risk intensity, failures that did not lead to abort, etc. These are the multiple top events 
shown in Figure 3. The parameter estimation is accomplished by simulating a large number of mission 
realizations, storing the end-state of each, and reporting the statistical results at the end of the 
simulation. Figure 7 shows a diagram of how the data items combine to produce these statistics. 
 

Figure 7: Flow chard of mission risk data. 
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4.  RESULTS 
 
All results in this paper were run using a commercial Monte Carlo simulation code called GoldSim 
(www.goldsim.com/ ). A Monte Carlo simulation framework was chosen for its flexibility in 
incorporating probabilistic data from multiple sources and linking them together as event-triggered 
responses in a time-stepped model. The physics models were run offline in advance to generate 
response surface failure probability tables that are used as inputs to the simulation. A lookup table is 
created for each model and the tables are linked to different failure events along the mission timeline, 
as prescribed by the propagation maps. If a failure event is triggered during a simulation realization, 
the time of occurrence is captured and the appropriate value(s) are pulled from the relevant hazard 
lookup table(s). Each mission in a realization is “flown” to completion until a LOC event occurs. 
Unless otherwise noted, all simulations were run with 40,000 Monte Carlo realizations using Latin 
Hypercube sampling. 
 
4.1. LOM and LOC for Baseline Design 
 
First, consider the integrated mission LOC/LOM assessment typically associated with PSA. This type 
of analysis would normally be used for requirement verification. Figure 8 shows the mean LOM and 
LOC probability breakdowns by mission phase for a 183-day mission to ISS. The mean probability of 
LOM for this space system is 1 in 26 and the mean probability of LOC is 1 in 244 for a single Monte 
Carlo run. The stacked bar chart shows most of the LOM contribution occurring during the long 
orbital phase, followed by LOM contributions of ~1:80 during the ascent phase. The LOC 
contributions show most of the failures occurring during the ascent phase and the long orbital stay. 
 

Figure 8: LOM and LOC estimates for generic spaceflight system mission to ISS. 

 
 
Figure 9 shows a chart of the top 20 LOM and LOC risk drivers for this example spaceflight system, 
sorted by descending contribution to LOC and then LOM. The driver labels are the loss of critical 
function “top events” in the risk model data hierarchy and are coded “[LV-xx]” for launch vehicle and 
“[SC-xx]” for spacecraft. Here, LOM is further differentiated as either a mission abort or a loss of 
vehicle (LOV). The top-20 list shows that the largest contributor to LOC comes from pressure vessel 
leaks and catastrophic first stage engine failures. The top LOM driver during the on-orbit phase stems 
from critical MMOD strikes to the spacecraft: ~1% occurrence for a 183-day stay while docked to the 
ISS. Since the spacecraft is largely unoccupied during this time (checkouts with crew occur weekly 
and for only 1 hour while docked), these critical penetration failures specifically lead to an LOV and 
would require a rescue mission to return the crew safely back to Earth, unless some repair capability 
was defined. 
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Figure 9: Top 20 LOM and LOC risk drivers for a generic spaceflight mission to ISS. 

 
 
4.2. Trade Studies and Uncertainty Studies 
 
While a LOC/LOM assessment has value, the requirement verification aspect of such assessments 
often occurs fairly late in a program, after the design has frozen to the point where a complete analysis 
can be performed. This is a bit of a catch-22, since the risk information is most impactful while the 
design is still progressing. A model such as the one described above, however, can provide additional 
insight throughout the design process. While the results will not necessarily characterize the final 
system to a large degree of precision, they offer tremendous value by providing context for design 
choices. The model’s modular design allows sensitivity and trade studies to be easily performed by 
sampling the corresponding rows or columns in the lookup tables. 
 
For example, consider a system trade study looking at ascent abort triggers that detect launch vehicle 
failures and recommend when an abort should be attempted. Suppose a large number of abort trigger 
options are being considered, but the system impact (e.g., cost, schedule, or complexity) is significant 
if the sensor suite and software must be re-engineered. Assume three options have been proposed for 
the abort trigger thresholds: the baseline option, a moderate option, and a sensitive option, as shown in 
Table 2. The baseline system has little or no abort capabilities (a large vehicle deviation rate trigger, 
no vehicle attitude trigger, and no early warning systems) and is compared against the two alternate 
abort systems. 
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Table 2: Ascent abort modeling assumptions used for abort trigger trade study. 

 
The risk model was run with a single failure environment assumption set and the three different abort 
trigger options. Figure 10, shows the 90% confidence intervals for LOC generated from the Monte 
Carlo simulations of each abort system. An abort system with the moderate design thresholds offers a 
large benefit to LOC, reducing the mean LOC probability from 1 in 660 missions to 1 in 1,220 
missions compared to the baseline abort system. The sensitive abort system with even more responsive 
thresholds further reduces the occurrence of LOC to a mean of 1 in 2,830 missions. This does not 
imply that such systems are desirable or even feasible, but it allows designers and decision-makers to 
perform what-if studies and make risk-informed decisions about the specific design threshold values 
that are needed to achieve a certain level of protection. 
 

Figure 10: Abort trigger trade study ascent LOC results (5th, mean, and 95th percentile 
confidence bounds). 

 
 

While the impact of the abort trigger options could be very significant in meeting a LOC requirement, 
it is also important to consider whether the results reflect the best knowledge of the system. For 
example, assume previous studies have shown that the assumptions about the blast and debris 
environments are very impactful to ascent LOC results. The project team would benefit from insight 
into how effective different the trigger results would be under different explosion scenario 
assumptions. Uncertainty distributions could be assigned to the likelihood of the range of potential 
blast environments, but this would yield the same mean results shown above, assuming the mean of 
the distribution was used for the sensitivity study. The confidence intervals would likely be different, 
but it is unlikely that they would characterize the differences in a way that could meaningfully impact 
trigger selections. Alternately, the trigger trade study could be re-assessed under specific blast 
assumption cases. This would provide a direct connection between the trigger results and the blast 
assumptions and would enable a decision based on the belief of those assumptions. This takes 
traditional uncertainty quantification to another level and highlights whether a result is sensitive to the 
uncertainty. In this way model uncertainty is included in the assessment, not in a combined way that 

 Trigger Baseline Moderate Sensitive 
Abort system Launch vehicle rate trigger (deg/s) 4 3 2 

Launch vehicle attitude trigger (deg) 90 8 4 
Abort system latency (ms) 300 300 300 
First stage warning time (s) 0 1 5 
Second stage warning time (s) 0 1 5 
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masks its importance, but in a manner that explicitly quantifies the impact. In addition, this model now 
allows a user to understand the range of possible conditions following a failure rather than choosing 
one specific set of assumptions. 
 
Incorporating the risk assessment into the design process can also produce significant value by 
iteratively identifying where overly conservative or insufficiently defined assumptions may need to be 
refined. For example, Figure 9 shows the top LOC driver to be on-orbit seal leakage. This seems 
intuitively wrong, so this risk driver should be examined further. It turns out that the con-ops stated 
that an abort would be initiated in the event of any PCS failure, so the model had the crew enter a 
“leaky” spacecraft and return to earth. While this may sound ridiculous, is it the result of a bad model? 
Maybe not, as it is not unusual to have blanket policies such as these defined as placeholders during 
the early design phases.‡ At this point, the hypothetical abort policy could be raised as an issue. While 
the LOC impact was certainly over-stated, the risk model highlighted an incomplete con-ops 
definition. By re-visiting and refining this assumption, the LOC became LOV, and further definition 
of mission operations and repair capabilities could remove these LOV even further.  
 
Similarly, the top LOM driver is MMOD penetration on orbit. As mentioned, this is LOV, not LOC, 
because a penetration can be isolated and the crew protected while the spacecraft is docked. However, 
the model allows simple trades to reduce the potential for these LOM (and LOV) scenarios. Changing 
the TPS design definition by increasing the TPS insulation thickness from 1 inch to 1.5 inches reduces 
the probability of a LOV from 1.04e-2 (+ 8.33e-4 at 90% confidence) to a probability of LOV 4.08e-3 
(+ 5.24e-4 at 90% confidence). 
 
5.  CONCLUSION 
 
A multi-disciplinary risk modeling approach was developed to merge the best information from each 
engineering field into a cohesive view of a space transportation system. A generic space architecture 
and mission were used to demonstrate how such a modeling approach can provide valuable risk-based 
insights during the design cycle rather than just at the end. 
 
For the risk model to impact the design, including con-ops, it must tie to meaningful design parameters 
and be responsive to the design process. It is suggested that the real value of PSA for space system 
design is not as much from the LOC/LOM verification but from the insight it can provide throughout 
the development process. The example in this paper illustrated aspect of dynamics modeling, inclusion 
of physics, trade support, model uncertainty, and using the PSA to drive discussions that would be 
easy to discount and delete from a risk model. The example also showed how a model can highlight a 
gap, not necessarily in the design or data, but in the operation assumptions themselves. Assumptions 
causing high variations in the outputs of interest merit further exploration and refinement of the 
underlying inputs, while assumptions that do not drive the key results may be suitable to use as-is. As 
design data matures, an iterative feedback loop between designers and risk analysts can be established 
early, when trade studies are still being performed and hold the most promise of being implemented. 
In order for such value to be realized, the model needs to be responsive so that improved data, 
assumptions, policy, or design features can be readily incorporated. If the analysis cannot be updated 
frequently, then such things as the seal leaks causing LOC will either encourage the design team to 
discount the PSA altogether, or even worse, put design resources into fixing a non-problem. 
Responsiveness is a key aspect of the modeling approach presented in this paper. 
 
In these ways, the risk model’s responsiveness and ability to represent meaningful parameters enable it 
to provide actionable, risk-informed design data. In addition to simply verifying requirements, the risk 
model provides an intelligent roadmap for a spaceflight program to plan future analysis studies and 
optimize design improvements throughout the system development lifecycle.  
 

                                                
‡ The architecture used for this study, as mentioned, was conceptual only and the abort policies were defined 
such that an abort was triggered on a loss of redundancy or function.  
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