

NEOShield: Design of a Gravity Tractor Demonstration Mission

N.T. Faber^(1,2), M. Busch⁽³⁾, D. Morrison^(2,3)

⁽¹⁾ SGT Inc.
 ⁽²⁾ NASA Ames Research Center
 ⁽³⁾ SETI Institute, Carl Sagan Center

Preparing to Protect the Planet

Overview

Need

1. Mission to demonstrate the Gravity Tractor (GT) concept.

Goals

- **1.** Demonstrate that the orbit deflection caused by a GT is detectable.
- 2. Obtain a knowledge base of operational techniques and best practices of relevance for future GT missions.
- 3. Demonstrate the GT concept in an effective and efficient way within constraints of cost, schedule and scope.

Key Technical Challenges

- **1** Determine the physical parameters of the asteroid at an accuracy that is sufficient to carry out the GT experiment in safe and controlled conditions.
- 2 Detect the change in the asteroid's orbit imparted by the GT and quantify that change.
- **3** Design an efficient thruster configuration and a robust control algorithm for safe hovering.

Mission Design: Baseline

■Asteroid Selection: ■Target: 2000 FJ10. ■Mass ≈ 3. 5 10⁹ kg (CBE). Diameter: between ≈120m and ≈210m.

Dedicated launch in 4^{rth} quarter 2026 on Falcon 9, standard 4.6 m fairing.

Mass: ≈1160 kg at launch, >1100 kg at asteroid arrival using Mars gravity assist.
 All-electric S/C based on SEP with RCS thrusters used for both attitude control and hovering.

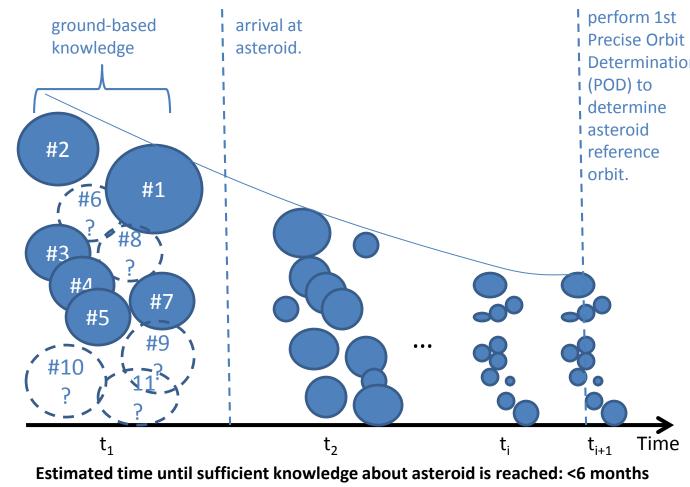
□Key operational aspects

■Hover at fixed operational standoff distance as close as possible to optimal standoff distance (CBE: ≈125m).

 Detect and quantify asteroid deflection using two dedicated Precise Orbit Determination (POD) campaigns.

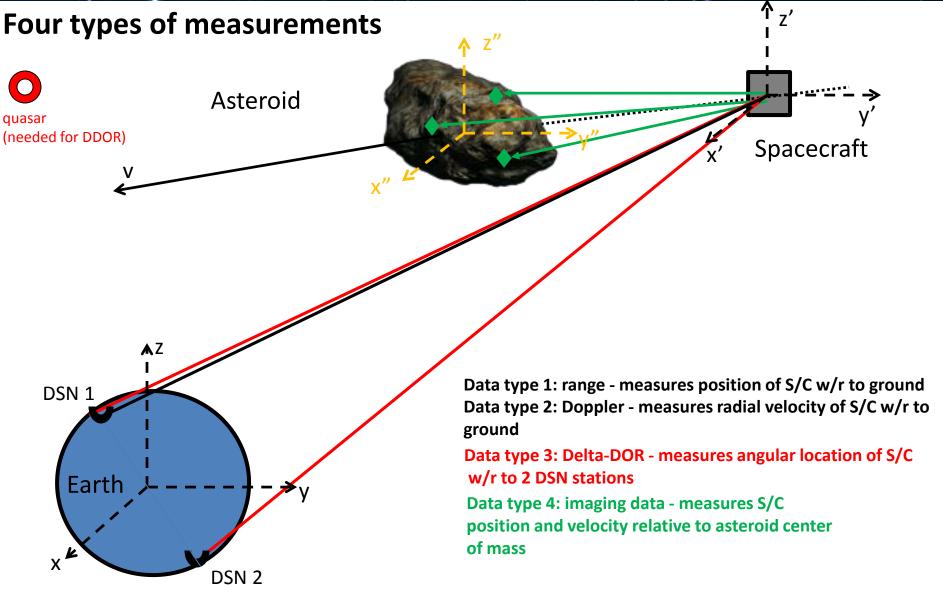
■Nominal mission duration: ≈6 yrs (of which ≈2 yrs of tractoring)

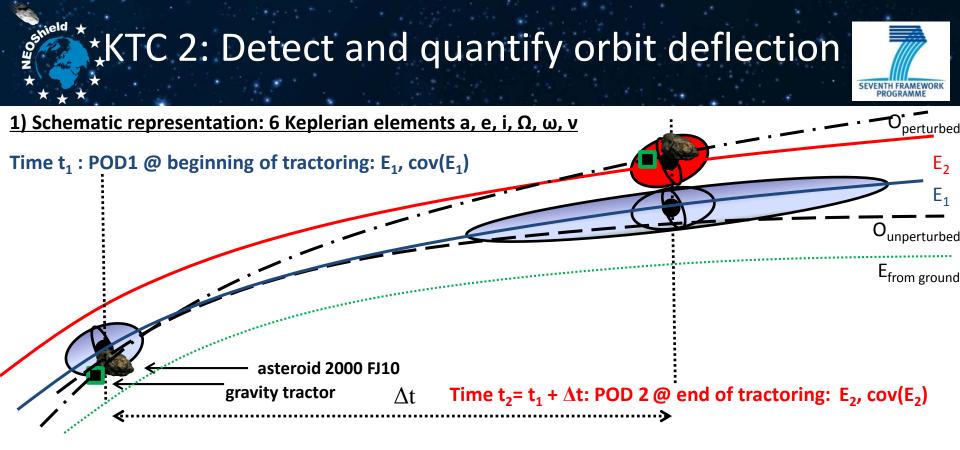
KTC 1: Refine understanding of asteroid environment



Method: increase knowledge iteratively using measurements and radio science results.

#	Key parameters
1	Mass
2	Size
3	Spin pole, body-fixed frame
4	Shape, surface morphology
5	Rotation period
6	Thermal inertia
7	Albedo
8	Mineralogy, chemical composition
9	Dust movement or gaseous exosphere
10	Presence of a satellite
11	Presence of debris


Instrumentation: X-band transponder 2 visible-wavelength cameras Lidar Optionally: VIR spectrometer

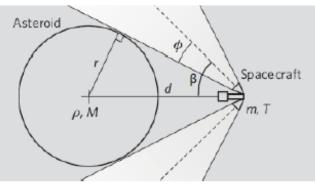

bubble size shows magnitude of uncertainty on parameters

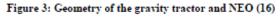
*KTC 2: Detect and quantify orbit deflection

2) Case study: using parameters of nominal mission and the semi-major axis a as figure of merit

······································			Table 2: magnitude of semi-major axis change as a result of tractoring				
When	Expected accuracy on semi- major axis knowledge (1 sigma)		Time Δt since beginning of tractoring	Lower bound for semi-major axis	Detectable at 1 sigma	Detectable at 3 sigma	
Prior to launch: using only	532 m or better		change imparted	LOC	LOC		
ground-based measurements.			12 months	≈5 km	Yes	Νο	
Prior to tractoring: using <i>in-</i> <i>situ</i> measurements (POD 1)	266 m or better		24 months (POD 2)	≈10 km	Yes	Yes	
After tractoring: using in-situ	266 m or better						

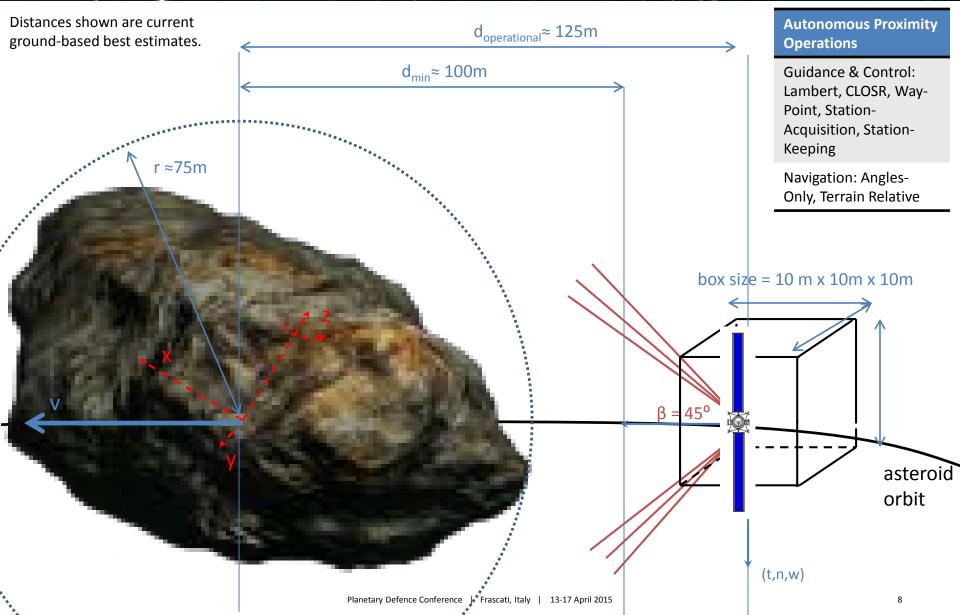
Table 1: accuracy on semi-major axis knowledge.


measurements (POD 2)


Shield *

Result of Monte-Carlo analysis:

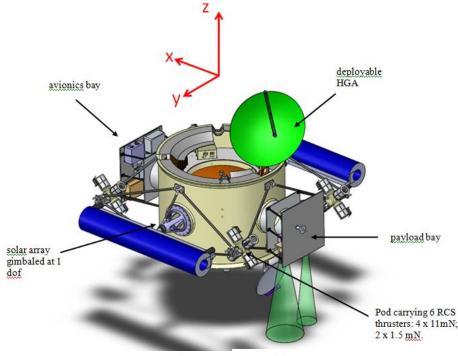
 $\begin{array}{l} \underline{11\text{-dimensional random sampling:}}\\ \text{uncertainty on 6 asteroid orbital}\\ & \text{parameters}\\ \text{asteroid size: 47.5 m < r < 150 m}\\ \text{asteroid density: 1 < ρ < 4}\\ \text{standoff distance: 60m < d < 580m}\\ \text{exhaust plume half angle: 15°< ϕ < $30°$}\\ \text{S/C mass: 500 kg < 1500 kg} \end{array}$


produces:

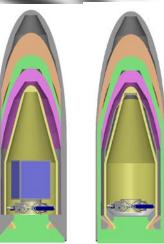
 $10^{-13} \text{ (m/s^2)} < a_{\text{NEO}} < 10^{-11} \text{ (m/s^2)}$

Work performed in collaboration with NEOShield partner ObsParis-IMCCE.

* KTC 3: Fuel efficient and fail-safe hovering



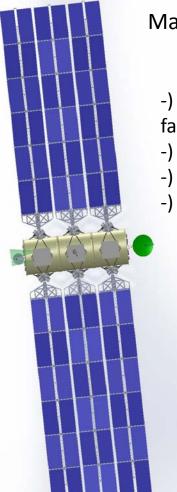
S/C Configuration



Subsystem	Mass (kg)	Margin (%)	Mature Mass	Power (W)
Propulsion	80	25	100	3333
ADCS	23	25	28	31
Power	150	20	180	153
Structure	322	10	355	27
Communications	15	5	16	87
Avionics	25	5	26	73
Thermal	23	5	24	253
Payload	10	5	11	67
Total Dry	648		739	4023
Propellant (Xe)	425		425	
Total Wet	1073		1164	

Main design advantages:

- 1. Heritage: flight-proven platform, in-house mission designs using platform for ARPO at asteroids
- 2. Launch flexibility: Atlas 5, Ariane 5, Delta 4, Falcon 9, Soyuz. Possibility to be the primary or the secondary payload.
- 3. Adaptability to broad range of asteroid deflection missions
- 4. Compatibility with multiple-GT mission scenarios


S/C Configuration (cont')

★ ★ ★ Subsystem	Configuration	PROGRAMME Heritage leveraged
System	Mass at launch: ≈ 1160 kg.	LCROSS
System	Mass at faulten, ~ 1100 kg. Mass at beginning of Hovering Phase ≈ 1110 kg	LUKUBB
	Power: 4 kW @ 1.6AU	
	Size (stoved): 2.4m x 2.4m; height = 1.07m	
Propulsion	All-electric Solar Electric Propulsion (SEP) system	DAWN, ARC SEP
	1 main NSTAR thruster for heliocentric transfer (90mN, $I_{sp} = 3100s$, 2.3 kW). 24 RCS thrusters for hovering and attitude control: 16 x(11mN, $I_{sp} = 3850s$, 400W), 8x(1.6 mN, $I_{sp} = 2800s$, 80W).	Demo
	Up-scope to include gimbaled thrusters for polyhedron tracking is possible (see RD-12).	
	Xe tank capacity: \approx 425 kg . Total DV: \approx 17 km/s	
ADCS	AD: 2 star trackers, TBD coarse sun sensors, 1 IRU. AD capability: < 50 arcsec/axis (TBC) in Roll, Pitch and Yaw AC: 24 RCS thrusters (see above). AC capability: TBD deg per axis in Roll, Pitch and Yaw Slew rate: < TBD mins for 180 degs slew in Roll, Pitch and Yaw	LCROSS, TOPEX, LRO
GNC	Autonomous Rendezvous and Proximity Operations (ARPO) System	ARC NCROSS
	H/W: OpNav camera, ProxOps camera, ARPO Flight Processor, DHU	proposal
	S/W: ARPO mission manager and FSW	
Power	2x13 m2 deployable, low density, flexible solar arrays. Efficiency: 29%. Gimbaled with 1 dof. Battery: 35 A/h NiH2 (TBC)	ARC SEP Demo, DAWN
Structure	1 standardized ESPA Grande ring: diameter = $1.57m (62")$; height = $1.07m (42")$	LCROSS
Communications	(X-X) -band system: SDST + 200W TWTA	JWST, MRO,
	HGA: 2 dof steerable at 0.95m diameter; 1 MGA; 2 Omnis	Landsat, EOS
Avionics	RAD 750 CPU, 1 GB SSMB onboard storage (TBC)	LCROSS, EO-1,
	FSW: Spacewire I/F, ARPO I/F via 1553B	WMAP
Thermal	Thermostatic controlled heaters, MLI, Paint	LCROSS, EOS,
Payload	2 visible wavelength cameras (see above): 1) Narrow-Angle Camera for OpNav: FOV=5°x5°, SNR=7,	Chandra DAWN,
i ayivau	res<0.2m@1km (DAWN Framing Camera); 2) SAIC ANGELS for ProxOps: FOV=9.8x9.8, SNR=6,	Hayabusa,
	res<0.2cm@1km and < 0.2.@100km	NCROSS prop.,
	LiDAR: dynamic range 50m – 50km	MarcoPolo-R
	Optionally: 1 visible-to-near IR spectrometer	10

Work in Progress: Multiple GTs

Main focus points:

-) end-to-end strategy: from rocket fairing to docked configuration
-) control strategy for stacked GTs
-) S-S, S-G communications
-) TBD

image credit: Arthur Descamps

See also: Foster, Bellerose, Mauro, Jaroux (2011): Mission Concepts and Operations Involving Multiple GTs, PDC 2011, Bucharest, Romania

Summary

- Presented baseline for the design of a gravity tractor demonstration mission.
- □ Baseline is to launch a ≈1160 kg ESPA ring based S/C to asteroid 2000 FJ10 in 2026 using a Falcon 9. Nominal mission duration is 6 years of which ≈2 years are dedicated to hovering and validating the deflection.