

Automated Scenario Generation for Meeting Human-in-the-Loop Simulation Requirements

Gano Chatterji and Yun Zheng Crown Consulting, Inc. Moffett Field, CA 94035-1000

Air Traffic Management Testbed (ATMTB)

- NASA building testbed to accelerate deployment of ATM concepts into NAS
- Goal of providing access to community
- Provides infrastructure and some applications
- Scenario generation is one of the capabilities of testbed

Motivation

- Manual creation of realistic scenarios for generating traffic for Human-in-the-Loop (HITL) simulation is difficult
 - Missing and erroneous data
 - Manual process is time consuming
 - Difficulties cause studies to be limited to few scenarios
- Automated scenario generation has potential for overcoming limitations
 - Use real air traffic data to create scenario
 - Remove flights with erroneous data
 - Select flights to achieve the desired short-haul to long-haul ratio
 - Alter landing times to shape scenarios

Background: Aviation 2018 Paper

"Automated Scenario Generation for Human-in-the Loop Simulations," *AIAA Modeling and Simulation Technologies Conference*, Atlanta, GA June 25-29, 2018.

Background: Aviation 2018 Paper

Background: Aviation 2018 Paper

- Simulations can be run with ATM Testbed created seed-scenario
- Seed-scenario found to be a good starting point for creating HITL-scenario
- Experience showed that many of the manual adjustments can be automated to directly create the HITL-scenario

Outline

- Step 1: Automated scenario generation using ATM Testbed
- Step 2: Automated scenario refinement
- Traffic scenario selection
- Results
- Conclusions

Input Data Source for Scenario Generation

- System-Wide Information Management (SWIM) data processed into files, and stored in Sherlock data-warehouse
- Reduced Record (RD)

Single record for each flight

Beacon-code, flight-plan, takeoff/landing runway, departure/arrival time, sector/center transition list

• Event Data (EV)

Multiple records related to events for each flight

Event time and type- landing, crossing (sector, center, TRACON)

• Integrated Flight Format (IFF)

Multiple records for each flight

All flight plans including amended flight plans & position data

• RD and EV useful for filtering and IFF for data augmentation

Multi-Aircraft Control System (MACS) Scenario Generation

- MACS is a distributed system with multiple-pseudo pilot and air traffic controller stations
- It is frequently used at NASA for HITL evaluations of ATM concepts
- MACS traffic scenario consists of
 - Flight route
 - Initial conditions

Load & filter input data

ATMTB generated scenario

5. Short to long-haul ratio filter

Northeast Region Traffic Scenario

- Obtained JFK, EWR, LGA and TEB runway configuration data from FAA's Aviation System Performance Metrics (ASPM) database
- Examined hourly JFK, EWR, LGA and TEB runway configuration data every day of 2017 to identify
 - Most frequently used configurations individually
 - Most frequently used configurations together
 - Hours with the most operations taken together
 - Selected 5/23/2017 for traffic scenario
 - Chose six-hours from 18 UTC (14 local) to 23 UTC (19 local)

5/23/2017 Traffic Scenario

Filtering Results

Filter	Criteria	# Aircraft
ASPM	None	865
ATMTB	MACS scenario generation	808
Route length	< 20 nautical-miles	791
Cruise speed	< 120 knots	791
Cruise altitude	< 600 feet	769
Entry time	< 30 minutes w.r.t start time	769

Short-haul to Long-haul Ratio

$$x_1 - \#$$
 long-hauls
 $x_2 - \#$ short-hauls
 $x_{1s} - \#$ selected long-hauls
 $x_{2s} - \#$ selected short-hauls
 $r -$ desired ratio

$$\frac{x_{2s}}{x_{1s}} = r$$

$$x_{1s} = x_1 \text{ and } x_{2s} = \lfloor rx_1 \rfloor \text{ if } r \leq \frac{x_2}{x_1}$$

$$x_{1s} = \lfloor \frac{x_2}{r} \rfloor \text{ and } x_{2s} = x_2 \text{ if } r > \frac{x_2}{x_1}$$

#	r	Short-haul	Long-haul
1	0	0	531
2	0.25	132	531
3	0.5	238	476
4	0.75	238	317
5	1	238	238
6	300	238	0

Scenario Landing Rate

Scheduling Arrivals

Results of Scheduling Arrivals

Histograms of Entry Times

Conclusions

- New automated scenario generation process can create MACS scenarios for meeting HITL simulation requirements
 - Selecting flights to achieve the desired short-haul to long-haul ratio
 - Altering landing times
- The two-step process is
 - Less error prone
 - Faster and efficient
 - Repeatable
- New process will be added to enhance ATMTB scenario generation capability