Fuel Cell Research and Development for Earth and Space Applications

Ian Jakupca, NASA Glenn Research Center 17 July 2018

Presentation Outline

- NASA Overview and Scope
- Background
 - Power and Energy Systems
 - Applicable Types of Electrochemical Systems
 - Energy Storage: Batteries vs. Regenerative Fuel Cells (RFC)
 - Comparison of Fuel Cell Technologies: Aerospace vs. Terrestrial
- Active NASA Fuel Cell research
 - Power Generation
 - Energy Storage
 - Commodity Generation
- Review

NASA Centers and Facilities

LUNAR EXPLORATION CAMPAIGN

In LEO Commercial & International partnerships

In Cislunar Space

A return to the moon for long-term exploration

Research to inform future crewed missions

NASA Exploration Campaign

NOTIONAL LAUNCHES

EARLY SCIENCE & TECHNOLOGY INITIATIVE

SMD–Pristine Apollo Sample, Virtual Institute

HEO/SMD–Lunar CubeSats

SMD/HEO-Science & Technology Payloads

SMALL COMMERCIAL LANDER INITIATIVE

HEO–Lunar Catalyst & Tipping Point

SMD/HEO–Small Commercial Landers/Payloads

MID TO LARGE LANDER INITIATIVE TOWARD HUMAN-RATED LANDER

HEO/SMD–Mid sized Landers (~500kg–1000kg)

SMD/HEO-Payloads & Technology/Mobility & Sample Return

HEO/SMD-Human Descent Module Lander (5-6000kg)

SMD–Mars Robotics

LUNAR ORBITAL PLATFORM—GATEWAY

HEO–Orion/SLS (Habitation Elements/Systems)

HEO/SMD-Gateway Elements (PPE, Commercial Logistics)/Crew Support of Lunar Missions

HEO/SMD-Lunar Sample Return Support

2020 2021 2022

2023

2024

2025 2026

Timelines are tentative and will be developed further in FY 2019

NASA's Lunar Reconnaissance Orbiter (LRO) Data

- The average temperature on the Moon (at the equator and mid latitudes) varies from 90 Kelvin (-298 degrees) Fahrenheit or -183 degrees Celsius), at night, to 379 Kelvin (224 degrees Fahrenheit or 106 degrees Celsius) during the day.
- Extremely cold temperatures within the permanently shadowed regions of large polar impact craters in the south polar region during the daytime is at 35 Kelvin (-397 degrees Fahrenheit or -238 degrees Celsius)
- Lunar day/night cycle lasts between 27.32 and 29.53 Earth days (655.7 to 708.7 hours)
- Regulating hardware in this environment requires **both power** and **energy**

Power and Energy Systems

Power Generation

Discharge Power Only

Description

- Energy conversion system that supplies electricity to customer system
- Operation limited by initial stored energy

Examples

- Nuclear (e.g. RTG, KiloPower)
- Primary Batteries
- Primary Fuel Cells
- Photovoltaics

NASA Applications:

Missions without access to continuous power (e.g. PV)

- All NASA applications require electrical power
- Each primary power solution fits a particular suite of NASA missions

Energy Storage

Charge + Store + Discharge

Description

- Stores excess energy for later use
- Supplies power when baseline power supply (e.g. PV) is no longer available
- Tied to external energy source

Examples

- Rechargeable Batteries
- Regenerative Fuel Cells

NASA Applications:

Ensuring Continuous Power

- Satellites (PV + Battery)
- ISS (PV + Battery)
- Surface Systems (exploration platforms, ISRU, crewed)
- Platforms to **survive** Lunar Night

Summary of Applicable Electrochemical Chemistries

	Low Tem	perature		High Temperature					
Cell Type	Proton Exchange Membrane (PEM)	Alkaline (AEM)	Alkaline (AFC)	Phosphoric Acid (PAFC)	Molten Carbonate (MCFC)	Solid Oxide (SOFC)		
Electrolyte	Iome Forymer Membrane	Anionic Lierymer Membrane		KOH in aspestos matrix	Phosphoric Acid in SiC structure	Liquid carbonate in LiAIO ₂ structare	Anionic conducting Ceramic		
Operating Temperature	10 – 80 °C	20 – 70 ° C		20 – 70 [°] C		70 – 225 °C	200 – 250 [°] C	~650 °C	600 – 1,000 [°] C
Charge Carrier	H⁺	OH-		OH-	Ht	CO ₃ ²⁻	O ²⁻		
Load Slew Rate Capability	Very High (> 1k's mA/cm²/s)	High (~ 1k's mA/	cm²/s)	High (~ 1k's mA/cn ² /s)	High (~ 1k's mA/cm²/s)	Low to Medium (~100's mA/cm²/s)	Low (~10's mA/cm²/s)		
Fuel	Pure	H ₂		Feasible	for	H ₂ , CO, Short Hydrocarbons			
Product Water Cavity	Oxygen	Hydrog	Λ			Hydrogen			
Product Water	Liquid P	roduct	Aero	ospace Ap	plications	Vapor, externally separated			
CO Tolerance	< 2 ppm	< 2 pp	m	< 5 ppm	< 50 ppm	Fuel			
Reformer Complexity	Very High	High		н	igh	Minimal			
Aerospace Viability	Promising	TBR (Low	TRL)	No longer in production	Not Viable	Not Viable	Promising		
Terrestrial Availability	High (Increasing)	Developm (Increas	iental ing)	N/A	Moderate (Stable)	Moderate (Increasing)	High (Increasing)		
Terrestrial Markets C = Commercial I = Industrial R = Residential	Transportation, Logistics, Stationary Power (C, I, & R)	Transport Logisti (C)	ation, cs	N/A	Stationary Power (C)	Co-generation and Stationary Power (C & I)	Co-generation and Stationary Power (C, I, & R)		

Summary of Applicable Electrochemical Chemistries

	PEM	AEM	Alkaline	Solid Oxide		
Key Notes	 Commonly used in mobile terrestrial applications Terrestrial systems vent Oxygen to remove product water from stack Mature for terrestrial applications, needs development for Aerospace 	 Solid polymer electrolyte Developing technology not yet deployed 	 Liquid electrolyte suspended in asbestos structure Hydrogen recirculates to remove product water from stack Used in Space Shuttle 	 Commonly used in stationary terrestrial applications Terrestrial systems vent hydrogen to remove product water from stack Mature for terrestrial applications, needs development for Aerospace 		
Advantages	 Rapid reaction kinetics support transient load response capability Support wide range of current densities Minimal start times (typ. < 1 min) Demonstrated high pressure operation Solid polymer electrolyte eliminates migration of acidic electrolyte 	 Reaction kinetics support transient load response capability Relatively high tolerance to contaminant gases Solid polymer eliminates migration of corrosive electrolyte Higher pH enables larger selection for wetted materials 	 Reaction kinetics support transient load response capability Relatively high tolerance to contaminant gases Higher pH enables larger selection for wetted materials 	 Wide range of fuels (Anode) Can be configured to internally reform hydrocarbons Relatively high tolerance to contaminant gases in Hydrogen Resistant to freezing when stored 		
Disadvantages	 Very sensitive to CO or Sulfur contaminants in Hydrogen stream Water-based system limits temperature regimes 	 Limited operational life Limited pressure capability 	 No longer available as company divested both IP and fabrication capability EPA restricted use of asbestos Liquid electrolyte migrates throughout fluid system requiring frequent and expensive servicing 	 Ceramic electrolyte limits transient load response capability Ceramic electrolyte limits start-up times to 10's of minutes to hours Seals need development for Aerospace applications Limited to low-pressure applications 		

Aerospace Electrochemical Systems

Fuel Cell

Power Generation

Description

- Converts supplied reactant to DC electricity
- Operation limited by supplied reactants
- Not tied to external energy source

NASA Applications:

Sustained High-Power

- Crewed transit vehicles (Apollo, Gemini, STS, etc.)
- Power-intense rovers/landing platforms

Description

- Stores supplied energy as gaseous reactants
- Discharges power as requested by external load
- Tied to external energy source

NASA Applications:

Ensuring Continuous Power

- Surface Systems (exploration platforms, ISRU, crewed)
- Platforms to survive Lunar Night

Electrolysis

or

Description

- Converts chemical feedstock into useful commodities
- Tied to external energy source

NASA Applications:

Life-support, ISRU

- **Oxygen Generation**
- **Propellant Generation**
- **Material Processing**

Example H₂/O₂ Aerospace Fuel Cell Systems

Regenerative Fuel Cell = Fuel Cell + Fluidic System

+ Electrolysis

Definitions: Power and Energy System Metrics

Fuel Cell

Power Generation

Primary Metrics

- Specific Power (W/kg)
- Output Power (Watts)
- Mass (kg)
- Volume (L)
- Reliability (Hours/Days)

Technical Challenges

- Water Management
- Reactant Purity
- Thermal Control
- Con-Ops
- Shelf-life

Regenerative Fuel Cell

Energy Storage

Primary Metrics

- Specific Energy (W•hrs/kg)
- Reliability (Years)
- Stored Energy (kW•hrs)
- Mass (kg)
- Volume (L)

Technical Challenges

- Component Reliability
- Corrosion/Chemical Compatibility
- Reactant Purity
- Water Management
- Con-Ops
- Thermal
- EZ System Pressure
- Maintenance
- Shelf-life

Electrolysis

Commodity Generation

Primary Metrics Production Rate (kg/day)

• Reliability (Months/Years) • System Pressure (Atm) • Mass (kg) • Volume (L)

Technical Challenges

• System Pressure • Component Reliability Corrosion/Chemical Compatibility • Fluid Purity Con-Ops Maintenance

Comparison of Fuel Cell Technologies

Terrestrial Aerospace Space Shuttle Fuel Cell Stack Toyota Mirai Fuel Cell¹ (1979 - 2014)

Differentiating Characteristics

- Pure Oxygen (stored, stoichiometric)
- Water Separation in μg

Fluid management issues and environmental conditions make aerospace and terrestrial fuel cells functionally dissimilar

Notes: 1 = http://www.toyota-global.com/innovation/environmental_technology/technology_file/fuel_cell_hybrid/fcstack.html

Differentiating Characteristics Atmospheric Air (conditioned, excess flow) High air flow drives water removal

Cross-Cutting Technologies: Fuel Cells, Electrolyzers, and RFCs

	Component	Aerospace TRL Level	Portability of Terrestrial Technology to Aerospace Applications	Remaining Technical Challenge				
Γ	Electrochemistry	9	High					
Electrolyzer	Materials	5+	High	High Pressure, Mass				
Technology	Seals	5+	High	High Pressure, Mass				
	Gas Management	5+	Moderate	High Pressure, Mass				
	Flow Fields	5+	High					
	Bipolar Plates	5+	Moderate	O ₂ vs air				
	Materials	5+	Moderate	O ₂ vs air				
rechnology	Electrochemistry	5+	Low	O ₂ vs air, Performance				
	Water Management	5+	Low	Flow Rate, µg				
Reactant	Fluidic Components	8+	Moderate	O ₂ vs air				
Storage	Procedures	5	Moderate	O ₂ vs air, Performance				
	Thermal	8+	Moderate	μg, Vacuum				
	Materials	8+	Low	O ₂ vs air				
Management	Water Management	5+	Low	Ο ₂ vs air, μg				
	Hardware/PCB	8+	High					
FC / EZ / RFC	Power Management	8+	High					
System 🔫	Structure	8+	High					
Avionics	Thermal	8+	High					
	Instrumentation	8+	Moderate					
NOTE: Not all relevant technologies exist within the same application. Elements of multiple terrestrial applications are required to meet various NASA mission requirements.								

Cross-Cutting Technologies: Fuel Cells, Electrolyzers, and RFCs

RFC systems, along with their core fuel cell and water electrolyzer technologies, share common reactants (hydrogen, oxygen, water) with multiple subsystems while supporting an electrical power interface.

NASA Fuel Cell Applications

Powering exploration activities

- Power Generation: Fuel Cells
- Electrification of Aircraft
- High-power rovers
- Entry/Descent/Landing (EDL)
- Upper Stage Platforms/Long loiter systems

Commodity Generation: Electrolysis

- ECLSS Oxygen Generation
- ➢ ISRU Propellant Generation
- ISRU Reduction fluids for Material Processing and Fabrication

Energy Storage: Regenerative Fuel Cell

- Lunar Surface Systems
- Lunar Landers / Rovers
- HALE Un-crewed Aerial Systems (UAS)

<u>Legend</u>

- Hardware Development
- Analytical Development
- Recent work not funded this Fiscal Year

NASA Fuel Cell Applications

Powering exploration activities

- Electrification of Aircraft
- High-power rovers
- Entry/Descent/Landing (EDL)
- Upper Stage Platforms/Long loiter systems

Commodity Generation: Electrolysis

- ECLSS Oxygen Generation
- ISRU Propellant Generation
- ISRU Reduction fluids for Material Processing and Fabrication

Energy Storage: Regenerative Fuel Cell

- Lunar Surface Systems
- Lunar Landers / Rovers
- HALE Un-crewed Aerial Systems (UAS)

<u>Legend</u>

Power Generation: Fuel Cell Analytical Activities

High Power Fuel Cells

- Concept: Crewed transit vehicles, crewed rovers, or rovers with energy-intense experiments
- ◆ Application Power: 1 kW to >10 kW
- Future activities: Laboratory testing of nextgeneration air-independent stacks ranging from 250 W to 1.2 kW on pure and propellantgrade reactants

♦ Special Notes:

Recent advances demonstrated autonomous operation and tolerance to vibration loads at

launch levels

Entry Descent and Landing (EDL) Concept: Utilize excess propellant to provide electrical power from Mars orbit insertion through descent, landing, and start-up of primary surface

- power system
- ♦ Application Power Level: ~34 kW
- Future activities: Laboratory evaluation of preprototype sub-scale fuel cell stack operating on O_2/CH_4

Power Generation: Fuel Cells Electrification of Aircraft

- Convert experimental X-57 to an electric aircraft
- Integration of key technologies to • yield compelling performance to early adopters
 - Useful payload, speed, range for point-to-point transportation
 - Energy system that uses infrastructure-compatible reactants, allowing for immediate integration
 - High efficiency for compelling reduction in operating cost
- Early adopters serve as gateway to larger commercial market

Primary Objective: Demonstrate a 50% reduction in fuel cost for an appropriate light aircraft cruise profile (payload, range, speed, and altitude).

POC: Nicholas Borer, nicholas.k.borer@nasa.gov

High-Performance Baseline

160-190 knots cruise on 130-190kW 1100+ pounds for motor & energy system

Efficient Powertrain

Turbine-like power-to-weight ratio at 90+% efficiency

Hybrid Solid Oxide Fuel Cell **Energy System**

>60% fuel-to-electricity efficiency Designed for cruise power; overdrive with moderate efficiency hit at takeoff and climb power

Energy Storage: Battery vs Regenerative Fuel Cell

Energy Storage Options for 300 W_{ele} Lunar Surface System By Location

Lunar Site	Shaded Period	Energy Storage	Li-ion Mass	LRFC Mass
	hours	kW•hrs	kg	kg
South Pole	73	22	137	40
Equator	356	107	668	<u>194</u>
Lacus Mortis (45°N)	362	109	679	197

\$ Savings @ \$1.5 M/kg
\$M
\$145.5
\$711
\$723

Energy Storage: Regenerative Fuel Cell System

R	Reactant Storage	Stor	age (300 p	re osig)	High-p Storage (ressure 3,000 psig)	Cr	yogenic torage	Share Prop	d with ellant	Dedi Prop	icated ellant										
Weight Factor	Evaluation Factors	To	tal Ra	nk	Total	Rank	Tot	tal Rank	Total	Rank	Total	Rank										
	Long Life/Performance		3.80		9	20		5.10	6	.90	6	.90										
0.9	Longevity (>50,000 hour run time)	0.	9 1	L	3.6	4	1.	8 2	2.7	3	2.7	3										
0.9	Reliability	0.	9 1		3.6	4	1.	8 2	2.7	3	2.7	3										Г
0.5	Shock/Vibration Tolerance	2	4	ŧ .	2	4	1.	5 3	1.5	3	1.5	3										
	Reactant Storage		4.50		0	00		-3.00	-1	.00	-2	2.00							_			
0.5	Dewar/Speciaized Tank				-	1 .			PE	- M	PE	- M	PE	M -	Solid	Oxide ·	Solid	Oxide				
0.5	COPV Tank				Electr	olysis			Anod	e Feed	Cath	ode	St	atic	H ₂	10.	co	10.				
0.5	Soft Tank/Bladder	0												1				9-2				
	Water System Processing		weight		Evalu	ation Fac	tors		Total	Rank	Total	Rank	Total	Rank	Total	Rank	Total	Rank				
0.5	Reactant Storage Thermal Balance		Factor		0.0303		19.000	201	Constanting and				Constraints		CONTRACTOR		100000000	1000				
0.5	Passive Thermal Rejection	1	-		Long L	ife/Perform	iance	2	12	.90	12	.90	10	0.20	11	.60	10	.70				
0.5	Active Thermal Rejection		0.9	St	ack Longev	ity (>50,000	hour	r run time	2.7	3	2.7	3	1.8	2	2.7	3	1.8	2				
0.5	Filtration/Purification Simplicity		0.9				1	Reliability	2.7	3	2.7	3	1.8	2	2.7	3	2.7	3				
0.5	Ambient Thermal Storage		0.9			Shock/Vibra	ation								DEM	AEC.	DEA	AEC	50	EC -	02	FC -
0.5	RFC Reactant Thermal Efficiency		0.9		Load Cycl	e Durability	(>1,0			Fue	Ce	lls			PEIV	IFC-	FEN	IFC -	SUFC -			10
0.5	Integrated System	-	0.4		Thermal Cy	cle Durabilit	ty (>6	j							N	FT	P	FT	H ₂	02	CO	/0 ₂
0.5	Freeze Tolerance			İ	Th	ermal Balan	ce	Weight													-	
0.5	Sustem Specific Energy (w/ storage)		0.5			Active Ther	mal R	Factor		Eva	luatio	n Facto	ors		Total	Rank	Total	Rank	Total	Rank	Total	Ran
0.5	System Specific Energy (W/ storage)		0.5		High To	mn Onoratio	n /6					15	20	14	40	10	80	0	10			
0.5	System Mass ontimization		0.5		righ-re				L	JIE LIE	/Ferior	mance	L -1 /	1 000)	15	.30	14	.40	10	.00	0.	10
0.5	System Volume optimization	-1	0.5		Low-Temp Operation 0.9 Stop/Start Durability (>1,000)				3.6	4	3.6	4	2.1	3	2.1	3						
0.5	Fluid Transfer Complexity		0.5		Passive Thermal 0.9 Thermal Cycle Durability (>625)				3.6	4	3.6	4	1.8	2	1.8	2						
0.5	Cryogenic Hydrogen		0.5		The	rmal Contro	ol wh	0.9		Longe	Longevity (>50,000 hour run time)			2.7	3	2.7	3	1.8	2	0.9	1	
0.5	Cryogenic Methane	-	0.1		ł	Rapid Startu	p (< 5	0.9		Reliability			2.7	3	1.8	2	1.8	2	0.9	1		
0.5	Cryogenic Oxygen	-				System		0.9			Shock/Vibration Tolerance			2.7	3	2.7	3	2.7	3	1.8	2	
0.5	Gaseous Carbon Dioxide		0.9			Fr	eeze	-		Them	ermal Balance				0.	20	0.	20	3.	00	3.	00
0.5	Gaseous Carbon Monoxide		0.9		High Pressu	ire Operatio	n (>1	0.6		Lov	v-Temp	Operat	ion (60	-80 oC)	2.4	4	2.4	4	0	0	0	0
0.5	Gaseous Hydrogen		0.9		Longev	ity (>50,000	hour	0.1			Rapid	Startup	(< 5 m	inutes)	0.3	3	0.3	3	-0.1	-1	-0.1	-1
0.5	Gaseous Methane		0.9	Su	b-System S	pecific Ener	gy (n	04		High-T	emp O	neration	1750-1	R50 oC)	0	0	0	0	16	4	16	4
0.5	Gaseous Oxygen		0.7		E	alance of Pl	ant C	0.5		ingini	Activ	a There	al Doie	stion	-05	1	-0.5	1	0	-	0	0
0.5	Water Vapor	(0.7	M	edium Pres	sure Operat	ion (:	> 0.5			ALLIV	Therm			-0.5	1	-0.5	1	15	0	15	0
	Total Score (57.2 possible)		0.5			System Ma	ss op	0.5			Passi	Cantan	та ке	Jection	-1	-2	-1	-2	1.5	3	1.5	3
			0.5		Sy	stem Volum	ie op	0.5			nermai	Control	when	off-line	-1	-2	-1	-2	0	0	0	0
			-	İ	Reactar	t Purity Cap	pabili	i		5	ystem				12	.70	10	.10	8.	90	6.	10
			0.8			Clean	Liqu	0.9	Sub	o-Systen	n Specif	ic Energ	y (no s	torage)	3.6	4	2.7	3	0.9	1	0.9	1
			0.8			Clea	n Wa	0.7				He	rmetic	sealing	2.8	4	2.8	4	0.7	1	0.7	1
Eval	uation Factor Ranking		0.8			Impur	e Liq	0.9				Round	-trip eff	ficiency	2.7	3	2.7	3	2.7	3	0.9	1
4 = Matur	re Technology with Heritage	٦	0.8			Impur	e Wa	0.7	N	linimum	Baland	e of Pla	nt Com	plexity	2.1	3	1.4	2	0.7	1	0.7	1
2 Guard	and tight Dealers ant	-	0.1				arbo	0.5		Oper	at ing Pi	ressure	(50 - 10	00 psia)	2	4	2	4	1	2	0.5	1
3 = Succes	sstul Field Deployment	4 1		i –	Total Sco	vra /63 6 m	osei	0.5			Syste	em Mas	s opt im	nization	2	4	1.5	3	1	2	1	2
2 = Succes	ssful Field Demonstration	2			Total Sci	ne (05.0 p	0331	0.5			System	Volum	e opt im	ization	2	4	1.5	3	1	2	0.5	1
1 = Succes	ssful Laboratory Demonstrations							0.9				Fre	eze To	lerance	-1.8	-2	-1.8	-2	3.6	4	3.6	4
0 = Not A	pplicable							0.9		Longe	evity (>!	50,000	hour ru	n time)	-2.7	-3	-2.7	-3	-2.7	-3	-2.7	-3
1 - Upproven Solution Available		1							R	C Reac	tant Ca	pability			1.	20	1.	20	1.	20	0.	70
	ficent Development Derwined	-				0.2					Hydrog	en (H2)	0.8	4	0.8	4	0.8	4	0	0		
-2 = Signif	licant Development Required	2						0.2					0	an (02)	0.0	-	0.0	-	0.0	-		0
-3 = Majo	r Advancement Required	_						0.1					Oxyg	en (02)	0.4	4	0.4	4	0.4	4	0.4	4
-4 = Prohi	ibitive / Not Possible							0.1			C	arbon N	Ionoxi	de (CO)	0	0	0	0	0	0	0.3	3
* Reversal	ble process (Fuel Cell/Flectrolysis)							0.1				Hydr	ocarbo	n (CH4)	0	0	0	0	0	0	0	0
inc versus	are proved (raci cent ciection and									fotal S	core (5	6.4 pc	ssible)	29	.40	25	.90	23	.90	17	.90
																			-			

Shared with

Cryogenic

Dedicated

High-pressure

Low-pressure

Each RFC sub-system traded across multiple parameters

Energy Storage: Regenerative Fuel Cell Trade Studies

Regenerative Fuel Cell (RFC) Model

- Developed detailed RFC integrated system • model to conduct sensitivity studies and mission trades
- Conducted parameter sensitivity study \bullet Location primary parameter ► Round-trip efficiency dominant metric
- Compared Solid Oxide and PEM chemistries ۲ >SOE not feasible for high pressure gas storage >SOFC limits electrical slew if sole power source
- Rotating components fail at a higher rate than ulletelectrochemical hardware

Crewed Surface Outpost Trade Study Results

- System development at low TRL ٠
- Location determines required energy storage which \bullet sizes RFC
- PEM-based RFC near-term solution for Lunar base \bullet
- Burdened² RFC could achieve up a specific energy to ۲ 510 W•hr/kg

<u>10 kW PEM RFC Energy Storage</u> System for Equatorial Lunar Outpost

Everything else

Volume (m³)

Energy Storage: Regenerative Fuel Cell System

Category	Element	Relative Maturity	Notes					
	PEM: Electrolysis	Advanced	ISS has flown but with major servicing requirements (every 201 days) and low pressure					
	PEM: Fuel Cell	Medium	Terrestrial hardware available but no Flight qualified hardware exists					
		Low	MOXIE promising but existing leak rates challenging for H ₂ /H ₂ O/O ₂ RFC application					
Electrochemical	Solid Oxide: Electrolysis	Very Low	Seal and pressure impose severe limitations for RFC application. Increasing scale a major concern. Limited CO/CO ₂ life data available					
	Solid Oxide: Fuel Cell	Low	Terrestrial hardware available but has unacceptable seal and pressure issues for an Aerospace application					
	Solid Oxide. Fuel Cell	Very Low	Increasing scale a major concern. Limited CO/O ₂ life data available					
	Storage	Mature	Many examples of fluid storage flight hardware					
Reactant Management	Fluid Management	Medium	Life, durability, and reliability issues for components and system					
	Reactants	Medium	Material Compatibility and contamination issues over projected mission duration					
wianagement	Water Management	Low	Purity and freezing issues over projected mission duration. Most ECLSS solutions not applicable to RFC application					
	Control	Medium	New bus voltage and new operating environment require new designs and test programs					
PMAD	System	Medium	Thermal and electrical insulation/grounding at new power levels					
Thormal	Deployment	Medium	Surface deployment options not yet demonstrated at scale required by RFC					
Therman	Surfaces	Medium	Maintaining radiative surface not demonstrated in relevant environment at scale without servicing					
	ConOps Low		Demonstrated RFCs require prohibitive maintenance schedules subject to a range of operational methodologies					
Sustan	Reliability / Life	Very Low	Limited life data available in relevant environment except for computer (CPU)					
System	Instrumentation	Low	Calibration drift and durability are mission-limiting issues					
	Maintenance	Very Low	Maintenance and servicing a mission-limiting issue. Robotic servicing reduces maintenance complexity and required spares. Robotic capabilities not demonstrated.					

Commodity Generation: Oxygen

- Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE)
 - Flight demonstration experiment as a part of the Mars 2020 rover mission
 - Generates gO₂ from CO₂ in Mars atmosphere (~1% scale) using Solid Oxide Electrolysis (SOE)
 - **Proof-of-concept for generating propellant oxygen** for Mars Ascent Vehicle (MAV) or breathing oxygen for astronauts
- **Oxygen Generator Assembly (OGA)**
 - ECLSS recovers ~ 90% of all water
 - Existing technology on-board the ISS since 2008
 - Advancing towards a smaller and lighter-weight version for scheduled upgrade in FY21
 - Hazard evaluation testing at WSTF
- Flight-qualified High Pressure electrolysis
 - ECLSS systems to generate 3,000 psi gO₂ by FY24
 - Evaluating existing system modifications to maintain mass while increasing generation pressure
 - Investigations into conserving gH₂ by-product

Commodity Generation: Hydrocarbon Fuel Synthesis

A *Green* Energy Application for SOE Co-Electrolysis: Manufacture of synthetic fuels from captured CO_2 and renewable energy

- Combined CO₂ and H₂O electrolysis produces CO and H₂, a basic • feedstock in the chemical industry (referred to as synthesis gas, or "syngas")
- Syngas can be utilized to produce a wide variety of liquid • hydrocarbons via the Fischer-Tropsch (F-T) process.
 - F-T process is a mature technology presently used to manufacture synthetic lubricants, etc.
 - Sasol (South Africa) produces gasoline and diesel fuel on a large scale via F-T.
- Recent review paper trade study concluded that synthetic • gasoline could be produced for costs as low as \$2/gal.*
- Allows the "recycling" of atmospheric CO₂ while maintaining our present hydrocarbon fuel infrastructure.

- emissions).

* Study and above graphic from Graves et al., Renewable and Sustainable Energy Reviews, 15, (2011) 1-23.

apture	CO;	È		
H ₂ H ₂ O	Fuel synthesis	C _X H _Y		2
	H ₂ C)	_	2

Two possible CO_2 -recycling scenarios: (a)CO2 recycled from industrial plant emissions (potential to reduce CO_2 net emissions by 50%). (b) Closed loop carbon recycling via CO₂ capture from Earth's atmosphere (near-zero net

IN-SPACE MANUFACTURING ON-DEMAND MANUFACTURING TECHNOLOGIES FOR DEEP SPACE MISSIONS

3-D printer installed on International Space Station in 2014. Crews aboard station have successfully used the printer to manufacture parts and tools on-demand.

Issued new appendix to NextSTEP Broad Agency Announcement soliciting proposals for development of first-generation, in-space, multi-material fabrication laboratory, or FabLab, for space missions.

First student-designed 3-D tool printed aboard station in 2016

In-Space Manufacturing logo created through Freelancer crowdsourced challenge.

NASA Fuel Cell Applications

Powering exploration activities

Electrified Aircraft Primary Power

Landers **Primary Power**

Lunar Outposts Energy Storage

Martian Outposts and Rovers

Primary Power Energy Storage **Commodity Generation**

National Aeronautics and Space Administration

Back-up Slides

EXPLORATION MISSION-1

The first uncrewed, integrated flight test of NASA's Deep Space Exploration Systems. The Orion spacecraft and Space Launch System rocket will launch from a modernized Kennedy spaceport.

Total distance traveled: 1.3 million miles – Mission duration: 25.5 days – Re-entry speed: 24,500 mph (Mach 32) – 13 CubeSats deployed

EXPLORATION MISSION-2

The first crewed, integrated flight test of NASA's Deep Space Exploration System, the Orion spacecraft and Space Launch System launching from a modernized Kennedy Spaceport.

4 astronauts - Total distance traveled: 1,090,320 km - Mission duration: 9 days - Re-entry speed 24,500 mph (Mach 32) - 9 metric ton Co-Manifested Payload deploy

National Aeronautics and Space Administration

Summary of Applicable Electrochemical Reactions

Habitation Systems

FUTURE **Deep Space**

75%+ O₂ Recovery from CO₂

>30 mo mean time before failure

On-board analysis capability with no sample return

Identify and quantify species and organisms in air & water

Smaller, efficient equipment

Conboard medical capability

- Full body mobility for expanded sizing range
- Increased time between maintenance cycles, contamination resistant system, 25% increase in EVA time
- Geological sampling and surveying equipment; common generic tool kit

Habitation Systems

ΤΟΟΑΥ

III -**₁-•** III

Habitation Systems Elements

F U T U R E Deep Space

- Solar particle event storm shelter, optimized position of on-board materials and CQ
- Small distributed pixel detector systems – realtime dosimetry, environment monitoring, and tracking
- Small actively read-out detectors for crew – real-time dosimetry
- Water Mist portable fire extinguisher
- Single Cartridge Mask
- Exploration combustion product monitor
- Smoke eater
- Automatic, autonomous RFID
 - Long-wear clothing/laundry
 - Bags/foam repurposed w/3D printer
 - Resource recovery, then disposal
- Ops independent of Earth & crew
- Up to 40-minute comm delay
 - Widespread common interfaces, modules/systems integrated
- Manufacture replacement parts in space

NASA Fuel Cell Applications

Lunar Architecture Studies identified regenerative fuel cells and rechargeable batteries as enabling technologies, where enabling technologies are defined as having: "overwhelming agreement that the program cannot proceed without them."

Surface Systems

Surface Maintenance-free operation of **regenerative fuel cells** for >10,000 hours using Power: ~2000 psi electrolyzers. Power level TBD (2-3 kW modules for current architecture). Reliable, long-duration maintenance-free operation; human-safe operation; architecture compatibility; high specific-energy, high system efficiency.

Mobility Reliable, safe, primary power from batteries and fuel cells, and energy storage from secondary batteries and regenerative fuel cells in small mass and volume. Human-safe operation; Systems: reliable, maintenance-free operation; architecture compatibility; high specific-power and high specificenergy.

Lander

Descent Stage:

Functional **primary fuel cell** with 3-kW nominal power, 6-kW peak power. Human-safe reliable operation; high energy-density; architecture compatibility (operate on residual propellants).

