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MMOD 101 Topics

• MM and OD environments
• Observed MMOD impact damage
• MMOD risk assessment process
• MMOD protection
• Hypervelocity Impact Technology (HVIT) group at NASA 

Johnson Space Center
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MMOD Environment Models

• Orbital Debris environment definition model is provided by 
Johnson Space Center (Orbital Debris Program Office)
– OD is the predominate threat in low Earth orbit
– Man-made objects in orbit about Earth impacting up to 16 km/s

• average 9-10 km/s for ISS orbit
– High-density (steel), medium-density (aluminum) and low-density 

(plastic) are major constituents of the debris population
– ORDEM 3.0 is latest model: http://orbitaldebris.jsc.nasa.gov/

• Meteoroid model provided by Marshall Space Flight Center
– Natural particles in orbit about sun

• Mg-silicates, Ni-Fe, others (porous, average density = 1.0g/cm3) 
– Meteoroid impact speeds: 11-72 km/s

• Average in Earth orbit 22-23 km/s
– MEM-R2 is latest release: 

http://www.nasa.gov/offices/meo/home/index.html
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MMOD Environment Models

• Meteoroids consist of background sporadic flux (static), and streams from 
meteor showers (variable)
– Occasionally, showers can turn into storms

• Orbital Debris is dynamic, changing as function of the rate of on-orbit 
explosions & collisions, launch rate and atmospheric drag/solar activity

Note, Spatial Density is proportional to impact risk

400km altitude 705km altitude
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Cataloged objects >10 cm diameter

1960
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Cataloged objects >10 cm diameter

1970

6



National Aeronautics and Space Administration

Cataloged objects >10 cm diameter

1980
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Cataloged objects >10 cm diameter

1990
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Cataloged objects >10 cm diameter

2000
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Cataloged objects >10 cm diameter

2010
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Debris movies

• Iridium-Cosmos collision
• Debris fly-through
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Evolution of the Cataloged Satellite 
Population

• According to the U.S. Satellite Catalog, the number of 10 cm and larger 
objects in Earth orbit increased slightly in 2016.

Destruction of Fengyun-1C

Collision of Cosmos 2251 and Iridium 33

~1400 are operational
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Mass in Near-Earth Space Continues to 
Increase

• The material mass in Earth orbit continues to increase and exceeded 
7400 metric tons in 2016.
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Long-Term Projection & the Kessler 
Syndrome

“The current debris population in the LEO region has reached the point where the environment is 
unstable and collisions will become the most dominant debris-generating mechanism in the future” 

– Liou and Johnson, Science, 20 January 2006
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Orbital Debris Material Distributions –
A-Train
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Effects of Micrometeoroid and 
Orbital Debris (MMOD) Impacts

• Even small MMOD impacts can cause considerable 
damage

– Hypervelocity MMOD impacts represent a substantial threat to 
spacecraft 

– Rule of thumb: at 7km/s, aluminum sphere can penetrate completely 
through an aluminum plate 4x the sphere’s diameter

Damage from a 1.3cm diameter  sphere 
at 7km/s (green circle is = projectile 

diameter)

Comparison of size of projectile to 
size of impact crater

Attached spall
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MMOD Damage to ISS Radiators

• MMOD impact damages observed to ISS radiator panels during Russian EVA (June 
2013)

ISS036e011356 
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MMOD Damage to ISS Radiators

ISS036e011356 
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MMOD Damage to ISS Radiators (US)

• MMOD impact damages observed to ISS radiator panels (Aug. 2013)

ISS036e037365 
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ISS Photovoltaic Radiator (P4) MMOD 
damage

• Initial indication found on 6/30/2014
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Ground hypervelocity impact test MMOD 
damage compared to P4 photovoltaic 

radiator damage
• Good comparison between on-orbit damage and ground-based hypervelocity impact 

test from 4.5 mm diameter aluminum spherical projectile at 7.08 km/s and 50 deg
impact angle (angle from target normal) compares well with actual damage

On-orbit exit 
damage

Ground-test 
exit damage

Ground-test 
exit damage

Ground-test 
entry damage

Comparison of exit damage
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Solar Array Damage
MMOD impact breaks bypass diode causing overheat

Front of Panel Back of Panel

MMOD hole

MMOD hole

iss040e064550 iss040e064597

Disconnected 
diode
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Another example of ISS Solar Array 
Damage from MMOD

MMOD damage 
caused disconnected 
bypass diode, 
leading to cell 
overheat damage
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MMOD Risk Assessment Process

• Process used by HVIT to identify MMOD risk drivers, evaluate risk 
mitigation options, optimize MMOD shielding, verify compliance with 
protection requirements
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Risk Relationships

• Poisson Statistics used to determine failure risk
– Probability of No Failure = exp (-N)

• N = mean number of failures
• N = flux of MMOD particles at/above ballistic limit particle size (number per 

m2-year) * surface area (m2) * time (years)
• PNF expressed in fraction
• Note: as spacecraft size increases, or mission duration increases, PNF 

decreases
• Note 2: as ballistic limit particle size increases (i.e., by using tougher 

materials or better shielding), flux decreases and PNF increases 
(improves)

– Risk of Failure = 1 – PNF
• Risk expressed in terms of % or Odds of failure 

• Option: can determine an average MMOD particle size that 
spacecraft shield needs to stop in order to meet a given 
reliability level, knowing the area and mission duration
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ISS shielding overview

• Several hundred MMOD shields protect ISS, differing by materials, 
standoff distance, and capability

• Heavier shields on front & sides (where we expect most MMOD impacts), 
less capable shielding on aft, nadir and visiting vehicles

Different shields represented by different color in geometry 
model used for MMOD risk assessments. Each shield varies 
in performance, i.e., the MMOD particle size that shield 
protects is a function of impact speed, angle, particle density, 
and projectile shape/orientation.

Velocity
Earth
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MMOD Shielding

– A multi-layer spaced shield provides more effective protection from 
hypervelocity impact than single layer

• Several types of shielding applied to spacecraft MMOD protection
– Whipple shields
– Nextel/Kevlar “Stuffed Whipple” shields
– Multi-Shock shields

• Protection performance characterized by impact tests & simulations
– Defined by “ballistic limit” equations (BLEs)
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MMOD shielding background

• MMOD shields typical composed of bumper(s), standoff, 
and rear wall (final protection layer)

– Exclude multi-layer insulation (MLI) thermal blanket

Shield

bumper

intermediate
bumper

rear wall

St
an

do
ff

Purpose: Breakup MMOD particle, laterally 
disperse resulting debris
Key material & physical parameters (V ≥ 7 
km/s): density, thickness to projectile diameter 
ratio, thermal properties 

MMOD particle
(projectile)

Purpose: Further breakup debris from first 
impact, slow expansion of debris cloud
Key material & physical parameters (V ≥ 7 
km/s): combination of first bumper and rear 
wall properties

Purpose: Stop debris from MMOD & 
bumper(s)
Key material & physical parameters (V ≥ 7 
km/s): strength, toughness, thickness
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• Background 
– The HVIT group has been in existence for over 30 years at JSC 

developing and evaluating spacecraft micrometeoroid and orbital debris 
(MMOD) shielding for crewed and non-crewed spacecraft, and designing 
operational techniques to reduce MMOD risk

– Small cadre of skilled and accomplished technical & engineering staff
– HVIT works closely with the spacecraft engineering/design groups to 

develop MMOD protection solutions to meet MMOD requirements with 
minimum mass, cost and schedule

– Products are based on a combination of hypervelocity impact test and 
analysis

• Goal 
– Improve MMOD protection of NASA spacecraft to meet/exceed crew 

safety and mission success requirements

Hypervelocity Impact Technology (HVIT) Group
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MMOD Risk Assessment Tools

• Bumper Code – Perform penetration & damage risk assessments
• MSC-Surv – Assess consequences of penetration for ISS: loss-of-crew, 

evacuation risk
• Hydrocodes (CTH, Autodyn, Exos, others) – Numerical simulation of 

hypervelocity impact

Bumper Code CTH Code

Detached spall
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HVIT analysis anchored in hypervelocity 
impact test results

• JSC-XI HVIT plans and performs over 400 impact tests per year
• White Sands Test Facility (WSTF) two-stage light gas-guns up to 8 km/s
• University of Dayton Research Institute (UDRI) 3-stage launcher to 10 km/s
• Southwest Research Institute (SwRI) shaped-charge launcher to 11 km/s

• Data used to develop and verify ballistic limit equations used in 
Bumper code on range of different spacecraft components and 
subsystems
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Post-flight Inspection Results for the ISS 
PMA-2 Cover

• HVIT and Boeing personnel inspected the PMA-2 cover for 
MMOD impacts after it was returned on the SpaceX CRS-6 
mission
– The cover was exposed to MMOD impacts for 1.63 years (from July 

2013 to February 2015
– Located on the forward port of the ISS pressurized mating adapter 2 

(PMA-2)
– Cover is 2m diameter multilayer blanket with a beta-cloth exterior 

surface (Teflon coated glass fabric)
• Twenty-six (26) micrometeoroid and orbital debris (MMOD) 

impact features were found
• Observed hypervelocity impact features were compared with 

Bumper 3 predictions using ORDEM 3.0 and MEM-R2
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Pressurized Mating 
Adapter (PMA) 2

velocity

zenith

PMA-2 Cover

PMA-2 cover location on ISS
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Post Flight Inspection Results

 26 impact features indicated by 
colored markers in image on 
right
Max hole diameter = 1.01 mm
 Average crater diam. = 0.45 mm
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Sampling at Impact Sites

 Six samples were extracted intact using a “hole punch” technique
 Relative orientation of internal layers was preserved 
 Samples were examined by Scanning Electron Microscope (SEM) 

equipped with energy dispersive X-ray (EDX) spectrometers to locate 
and determine elemental composition of impact residues
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SEM/EDS Results

 SEM-EDXA compositional indication of high density orbital debris (OD) as 
the source in 4 of 6 samples, and micrometeoroid (MM) in 2 samples

Impact
Site

Hole Size
(mm) 

Impactor Type:
Major Constituents

Possible
Impactor

1 0.60 OD: Steel, ZnS, FeO, Ti Steel

2 1.01 OD: Steel, Nickel-Oxide Steel

10 0.80 OD: Steel, Iron-oxide Steel

12 0.57 MM: Ca, Mg, Fe, S, O Chondrite

13 0.73 MM: Fe, Ni, S metal/sulfide-rich

24 0.36 OD: Steel, Iron-oxide, Ti Steel
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Comparison between observed holes and 
Bumper 3 predictions

 Bumper predictions for MM and OD are consistent with observations for holes 
sizes > 0.3mm (counts for hole sizes < 0.3mm suffer from observer/eye limits)
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Bumper Code Assessment

 Bumper 3 was used to calculate the 
expected number of holes in the 
beta cloth of a stand alone model of 
the PMA-2 cover (see table below)
 Years = 2013 through 2015
 Time averaged altitudes
 Damage equation = beta cloth hole 

size
FE model of 
PMA-2 cover

Start 
Date

End 
Date Days Years Altitude

(km)

7/9/13 1/1/14 176 0.482 413.6
1/1/14 1/1/15 365 1.000 414.5
1/1/15 2/25/15 55 0.151 402.1

Total 596 1.633

velocity

Hole
Diameter

(cm)
MEM
R2

ORDEM
3.0

MMOD
TOTAL

0.0288 16.89 14.60 31.49
0.0460 4.40 3.87 8.27
0.0920 0.46 0.68 1.14
0.1380 0.11 0.30 0.40
0.1840 0.04 0.15 0.19
0.2300 0.02 0.08 0.10
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