

Lunar seismology enabled by a Lunar Orbital Platform - Gateway Feb. 28, 2018

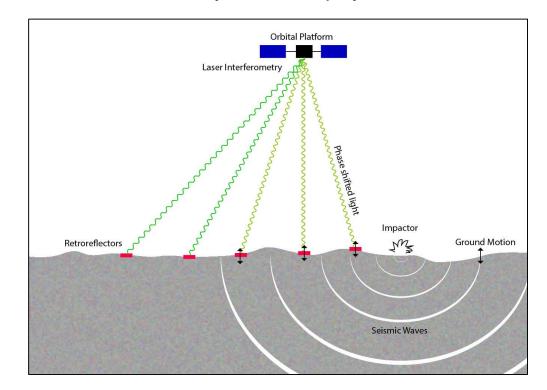
Renee Weber, NASA Marshall Space Flight Center

C. R. Neal, University of Notre DameS. Kedar, M. Panning, B. Banerdt, NASA Jet Propulsion LaboratoryN. C. Schmerr, University of Maryland, College ParkM. Siegler, Planetary Science Institute, Southern Methodist University

Instrument Function Statement and Gateway Usage

STATEMENT	INSTRUMENT/CONCEPT DETAILS		
FUNCTION STATEMENT	Science objectives:		
Deploy a long-lived network of stationary seismometers to the surface to monitor for seismic shaking induced by artificial sources, natural tectonism and meteorite impacts.	 Quantify the amount and distribution of seismicity Determine the detailed structure of the crust, mantle, and core 	 Luna (Soviet) Landing Sites Apollo Landing Sites Procellarum KREEP Terrane Apollo iteat Flow 2 117 	
WHY IS THE GATEWAY THE OPTIMAL FACILITY FOR THIS INSTRUMENT/RESEARCH?	Gateway can enable seismology- enhancing observations:Penetrators	12 14 Apollo Passive Scientic Returned	
Lunar seismology is optimally enabled by a Gateway architecture that incorporates a reusable lunar lander/ascent vehicle that can deploy identical instrumentation at globally distributed locations	 Active source release Laser interferometry Surface monitoring (including 	Feldspathic Highlands Terrane	

Two basic concepts



Surface geophysical packages

VS.

Gateway external payloads

"releaseables"

Basic Instrument Parameters – assuming surface geophysical package

PARAMETER	ILN (SOLAR/BATTERY)	ILN (ASRG)	Future	
MASS (KG)	25	30	<50kg (commercial?)	
VOLUME (M)	-	-	-	
POWER (W)	19.5 day / 7.8 night	Up to 74	-	
THERMAL REQUIREMENTS	Night survival required (±50°C operating)			
DAILY DATA VOLUME	~hundreds MB/day raw data generated (amount downlinked depends on comm. availability)			
CURRENT TRL	TRL 4-6 for notional payload instruments			
WAG COST & BASIS	2 stations under Discovery / 4 stations under New Frontiers New Frontiers			
DURATION OF EXPERIMENT	6 years	6 years	10 years	
OTHER PARAMETERS	- WORKSHOP FEBRUARY 27-MARCH 1, 2018	-	-	

Instrument Gateway Usage – "releaseables" (landers, penetrators, etc.)

USAGE	INSTRUMENT REQUIREMENTS & COMMENTS	
ORBIT CONSIDERATIONS	Appropriate for release of autonomous assets to lunar surface	
FIELD OF VIEW REQUIREMENTS	N/A JPL LUNETTE mission concept	
REQUIRES USE OF AIRLOCK	N/A	
CREW INTERACTION REQUIRED?	N/A	
WILLASTRONAUT PRESENCE BE DISRUPTIVE?	Ν/Α	
DOES THE INSTRUMENT PRESENT A RISK TO THE CREW	Ν/Α	
OTHER CONSUMABLES REQUIRED	N/A	
SPECIAL SAMPLE HANDLING REQUIREMENTS	N/A	
NEED FOR TELEROBOTICS?	Possible use of arm or other deployment mech. for asset release	
OTHER REQUIREMNTS OF THE GATEWAY?	Far-side stations would require comm. relay.	

Instrument Gateway Usage – external payloads (imagers, lasers, etc.)

USAGE	INSTRUMENT R	EQUIREMENTS & COMMENTS	
ORBIT CONSIDERATIONS	Stable LLO (lase	rs/LROC); L2 halo for far-side impact flash monitoring	
FIELD OF VIEW REQUIREMENTS	N/A	Orbital Platform	
REQUIRES USE OF AIRLOCK	N/A	Laser Interferometry	
CREW INTERACTION REQUIRED?	N/A		
WILL ASTRONAUT PRESENCE BE DISRUPTIVE?	possibly	Retroreflectors	
DOES THE INSTRUMENT PRESENT A RISK TO THE CREW	N/A		
OTHER CONSUMABLES REQUIRED	N/A		
SPECIAL SAMPLE HANDLING REQUIREMENTS	N/A		
NEED FOR TELEROBOTICS?	Possible for instrument pointing and stability		
OTHER REQUIREMNTS OF THE GATEWAY?	N/A		

Background information and science drivers:

- 1) International Lunar Network Final Report <u>https://sservi.nasa.gov/wp-content/uploads/drupal/ILN_Final_Report.pdf</u>
- 2) LUNETTE: A Discovery-class Lunar Geophysical Network concept: https://www.lpi.usra.edu/meetings/lpsc2010/pdf/2710.pdf
- 3) Enabling technologies: <u>https://www.hou.usra.edu/meetings/V2050/pdf/8143.pdf</u>

Status of current development efforts:

- 4) Penetrator concept (LUNAR-A heritage): <u>https://www.sciencedirect.com/science/article/pii/S0032063308004170</u>
- 5) Impact flash monitoring: <u>https://www.hou.usra.edu/meetings/deepspace2018/pdf/3031.pdf</u>
- 6) Laser retroreflectors: <u>https://www.hou.usra.edu/meetings/leag2017/pdf/5070.pdf</u>
- 7) Planetary Broadband Seismometer: https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/263006
- 8) Seismometer to investigate ice and ocean structure: <u>https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/259995</u>
- 9) Magnetometer: https://www.hou.usra.edu/meetings/deepspace2018/pdf/3173.pdf
- 10) Heat flow probe: https://www.hou.usra.edu/meetings/deepspace2018/pdf/3009.pdf

InSight-leveraging:

11) VBB

12) SP

13) HP³