Institutional Schlieren:
A Production-Level Wind Tunnel Test Measurement

01/08/2015

Ted Garbeff
NASA Ames AOI
Theodore.J.Garbeff@nasa.gov

James T. Heineck
NASA Ames AOX
James.T.Heineck@nasa.gov

T. Kevin McDevitt
NASA Ames AOI
Kevin.McDevitt@nasa.gov

Laura Kushner
Aerospace Computing Inc.
Laura.K.Kushner@nasa.gov
Outline

• Use of schlieren/shadowgraph at NASA Ames Unitary Plan Wind Tunnel (UPWT).

• Institutional schlieren/shadowgraph data systems modernization project.
 ▪ Hardware selection.
 ▪ Software methodology.

• Overview of completed data systems.
 ▪ High-level system components.
 ▪ Image acquisition and processing.
 ▪ Current system capabilities.

• Future target capabilities/improvements.
Overview of Schlieren/Shadowgraph

• Technique often deployed as a test dependent facility measurement.

• Technique used to observe phenomena that are not visible to the unaided eye. Allows observation of aerodynamic flow features:
 • Model shockwave formation and interaction.
 • Flow separation.
 • Mach wave radiation.

• Caused by density gradients created by flow phenomena. Technique exploits index of refraction changes in test section.

• Optical technique,
 • Point light source collimated on one side of test section using large concave mirror.
 • Collimated light passed through test section.
 • Light collected by a large concave mirror and imaged onto camera on other side of test section.
NASA Ames Unitary Plan Wind Tunnel Schlieren/ Shadowgraph

- 48” Mirrors
- High-Speed Camera
- LED Light Source

Diagram showing the setup of the wind tunnel with a control room and data acquisition system.
Motivation

- Historically Ames Unitary Plan Wind Tunnel (UPWT) provided customers optical data services on a per test basis.

- These optical data services typically consist of Schlieren, Shadowgraph, infrared thermography, and pressure sensitive paint (PSP).

- Hardware/personnel furnished by Experimental Aero-Physics branch.

“Institutionalize optical data services” projects focusing on Schlieren, Shadowgraph, IR thermography, and pressure sensitive paint with the goals of:

- Purchasing state of the art, dedicated facility instruments.
- Improving data productivity by developing new data systems controls tools.
- Improving data product quality.
- Reducing data product delivery times.
Objective: Institutionalize/modernize UPWT Schlieren/Shadowgraph systems with an emphasis on test productivity and data quality.

- Purchasing/deploy dedicated hardware in both 11-by-11 and 9-by-7 foot test areas.
 - State of the art cameras and acquisition/control equipment.
 - Light sources, optics, mounts, remote controls.
- Develop improved software architecture.
 - Reduce labor intensive aspect of optical services.
 - Improve near-time delivery of data products to customers.

Requirements:

- Minimize impact to test productivity.
 - Automate data collection process.
 - Improve camera throughput.
- Capture unsteady flow field phenomena when needed.
 - Camera used must be capable of high frame rates, but of sufficient resolution.
- Improve delivery rate of data products.
 - Camera used must have fast download rates.
- Develop a group of standardized data products.
 - Pixel averaged image.
 - Low-speed video.
 - High-speed video.
Hardware Down Select Criteria

Selecting a Camera
- Frame rate versus resolution
- Sensitivity
- Stability/Reliability
- Data transfer
- Workflow
- Auxiliary outputs

Selecting a Light Source
- Power output
- Stability/Reliability
- Point size
- Configurability

Selecting Image Acquisition/Processing
- Reliability
- Ease of use
- Redundancy
- Expandability

Testing in Production Wind Tunnel Environment
Dual-Color Shadowgraph

- A dual-color shadowgraph configuration was used to evaluate multiple makes and models of cameras in the wind tunnel during production testing.
Cameras and Light Sources
• Evaluated several high-speed camera manufacturers in facility.
• The Vision Research Phantom v2010 best fit unique needs of Ames UPWT.
• Selected new high-powered pulsed LED light sources.

Phantom v2010
- 22,500 FPS at 1280x800 pixels.
- ISO 64,000.
- 10 Gigabit Ethernet (~350 MB/sec)
- HD-SDI Auxiliary Output

ISSI LMS-520/LMS-620
- High-powered (2-3W) pulsed LED.
- Operated continuous or pulsed.
- Green and red wavelengths.
Image Acquisition and Processing
• A single server-class, rack-mount PC for both image acquisition and processing.

Server-class SuperMicro

- Dual six-core 2.4 GHz Xeon processors
- 24 GB RAM
- 64-bit Windows 7
- LabVIEW Developers Suite 2013 SP1
- LabVIEW Vision Development Module
- 4TB Raid 1

Intel AT2 10 Gigabit Server Adapter

MatrixVision HD-SDI Framegrabber
High-Level Data System Schematic

- Two complete data systems deployed in both 11-by-11 foot and 9-by-7 foot test areas.
UPWT Data Systems Architecture

• Data systems coordinator (DSC) interfaces any number of “test dependent” data services.
• Network published “shared variables” and remote procedure calls allows information flow to and from schlieren/shadowgraph data system.
Image Acquisition and Processing Architecture

- LabVIEW based data system developed in-house.
- Automated, synchronized data acquisition and image processing.
- Parallel processing and acquisition results in real-time data products.
- Distributed video for real-time decision making.
Data System Graphical User Interface

- In-house developed camera acquisition/processing software utility.
Live Distributed Video Feed

- Permanent overlay displays test conditions as communicated from the facility.
- Non-destructive overlay indicates acquisition system health and status.
Overview of Data Products

Data Products/Data Point =
- Low-Speed Video (HD-SDI), 1080p acquired up to 30 FPS
- High-Speed Video (Digital), 550 frames @ 26010 FPS
- Stills
- Averaged Still (pixel average of all stills)

All processed automatically and in parallel with acquisition.
Spectral Shadowgraphy

- High frame-rates make dynamic analysis possible.

Pixel Average Time History

Region of Interest

Zoomed ROI

PSD
Computed from image data
Future Capabilities

Dual Schlieren/Shadowgraph
- Augment dual imaging concept with addition of high-resolution, wide-field camera.

Remote Optomechanics
- Ability to traverse in three axes and rotate in two.
- Remote control of camera/lens system position to simplify setup, enable remote panning.

Advanced Processing
- GPU accelerated processing to work large data sets and perform dynamic analysis.

Advanced Optics
- Correct astigmatism and explore stereoscopic techniques.
Optical Test Section of the Future

Improved viewing for Schlieren/Shadowgraph

- New larger windows to replace the 3 center rows allow for unobstructed Schlieren viewing.
- Removal of two wall slots between rows may affect tunnel calibration and test section airflow:
 - Flow measurements are being taken to quantify the effects.
 - Options for eliminating flow effects are being developed (i.e. interchangeable window section).

Resulting improved imaging from larger window
Conclusions

Advanced, institutional, production-level schlieren/shadowgraph systems at Ames UPWT 11-by-11 and 9-by-7 foot test sections.

• Hardware down-select:
 • High-speed digital cameras.
 • High-powered LED light sources.
 • Server-class computing for acquisition and processing.

• New software:
 • LabVIEW based acquisition and processing.
 • Data system synchronized to facility through data systems coordinator.
 • Processing done in parallel with acquisition.
 • Data products standardized and available real-time.

• New capabilities:
 • High frame-rates allow for off-body spectral analysis of flow field for correlation with on-body acoustic measurements.

• Future capabilities:
 • Leverage dual imaging and electro-mechanical actuation.
 • Advanced processing and optics.
Questions?