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Heatshield for Extreme Entry Environment 
Technology (HEEET) Project

Ø Goal: Mature HEEET system to support NASA Science Mission Directorate 
robotic entry missions (TRL 6)
§ Utilizes a novel material based on 3D weaving
§ Target missions include Venus Lander and Saturn Probes
§ Capable of withstanding extreme entry environments: 

§ Peak Heat-Fluxes >5000 W/cm2; Peak Pressures >5 atm
§ Scalable system from small probes (~1m scale) to large probes (~3m scale)
§ Develop Integrated system, including seams 

Ø Culminates in testing 1m Engineering Test Unit (ETU)
v Integrated system on flight relevant carrier structure
v Proves out manufacturing and integration approaches
v Used to validate structural models

Ø Project is co-funded by NASA Space Technology (STMD) and Science Mission 
Directorates (SMD)

TileTile
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HEEET Mission Infusion

• SMD offered HEEET as NASA-developed New Technology
• Discovery-2014, NF-4 (2016) and ESA M-5

• AO guaranteed NASA will deliver HEEET at TRL 6, if mission selected.
• Commitment to close gap between current status and TRL 6  

• HEEET was enabling for several proposals
• Four NF-4 proposals and one ESA M-5 proposal (HERA Saturn Probe mission). 
• All these proposed designs relied on HEEET performance

• HEEET enables the high heat loads experienced by trajectories with peak entry 
decelerations loads of < 50 g’s

• Permits sensitive instrumentation and ground-based dynamic verification of instrument 
robustness

• Heatshield mass reduced by at least 40% relative to Carbon Phenolic
• Additional mass available for payload

• None of these missions were not selected by the New Frontiers program for further 
evaluation 

• HEEET development will be completed in mid FY19 benefiting 
• Future small spacecraft missions to Venus, 
• Discovery,  New Frontiers AOs,  and 
• Flagship missions to Saturn, Uranus and Neptune 
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HEEET Manufacturing

Fiber Manufacturing 
(Raw Materials)

Blended Yarn
(Insulation Layer)

Stretch Break / 
Carding Blending

Carbon Fiber
(Recession Layer) Tile Infusion

Gap Filler 
Infusion

Weaving Forming
Gap Filler 
Softening 
Process

Machining
HEEET TPS 

Assembly & 
IntegrationCutting

• A primary project objective was to technology transfer as much of the manufacturing 
to industry to put in place the supply chain to support missions

• Success in tech transfer is demonstrated through build of the Engineering Test Unit

Bally Ribbon Mills (BRM) Fiber Materials Inc. (FMI)
NASA 
JSC
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Seams in the HEEET Architecture

Ø The HEEET project has baselined
a gap filler between tiles to 
perform two primary functions:
u Provide structural relief for all load 

cases by increasing compliance in 
the joint

u Provide an aerothermally robust joint, 
with adhesive widths <0.010” and 
recession performance in family with 
acreage material

Ø Seam:
u Gap Filler

§ Compliant version of acreage material 
u Thin Adhesive (0.010 in)

Ø Close Out Plugs
u Series of close out plugs are used at 

some gap filler to gap filler intersections
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Seam Aerothermal and Structural Tests 
Critical for TRL Advancement

Radial Seam

T – Junction
Radial to Circumferential 
Radial Downstream

Circumferential to Circumferential
Closeout Plug

T – Junction
Radial to Circumferential 
Radial Upstream

Recent AEDC Test Matrix 

LHMEL 4pt Bend TestingLaRC 4-pt Bend Flexure Testing

IHF 3” Nozzle
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HEEET Aerothermal Testing

u AEDC wedge allows testing at mission relevant Hot Wall turbulent shears of ~4000 Pa 

Ø Arcjet environments from Venus, Saturn and Earth entry concept studies
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HEEET	Acreage	Testing	=

IHF	3”	Nozzle
1”	IsoQ

AEDC	H3
2”	Flat	FaceAEDC	(Wedge)

LHMEL

IHF	6”	Nozzle
2”	Flat	Face

HEEET	Seam/Adhesive	Testing	=
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Engineering Test Unit Testing Overview

Ø MDU and ETU Carrier Structure Proof tests to served as precursor to ETU testing and 
Static Mechanical testing

Ø ETU tests planned for NASA Langley Research Center

Point Load Test

Thermal-Vacuum

MDU Carrier Structure Proof Test
ETU Carrier Structure Proof Test

Pre-Integration

Integrate TPS on 
Carrier Structure

NDE
(CT)

Static Mechanical Test

NDE
(CT)

ETU with Rigid Plate Closeout (Inverted)Point Load Test

Point Load Test Setup LARC 6x6 Thermal-Vacuum Chamber
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HEEET Project Status

Ø ETU testing to be completed in August 2018
u ETU instrumentation to be completed early June 2018

§ 80 strain gages and 24 thermocouples
u ETU testing starts mid-June 2018

Ø Two remaining arcjet test series planned in FY18/FY19
u Arnold Engineering Development Center (AEDC)

§ Combined heat flux, pressure and high shear environments
§ Completed 1st round of testing on 5/18/2018, 2nd round planned for 

FY19
u NASA Ames Interaction Heating Facility (IHF) 3” Nozzle (June 

2018)
§ High heat flux and pressure

Ø 4pt Bend Testing at NASA Langley (December 2018)
Ø 4pt Bend Testing at LHMEL (October 2018)
Ø Pyroshock testing (July 2018)
Ø Final documentation in Design Data Book (March 2019)
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Backup
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Structural Testing

Ø Element, subcomponent, component and subsystem level testing are 
being performed to verify the structural adequacy of the ETU

– ETU design assumes a 1m Saturn Probe mission 
– Analytical work will be used to evaluate vehicles > 1-meter diameter (Venus)

Ø Element Level Testing:
u Recession and Insulating Layers
u -175F – RT – 350+F
u Warp, Fill, Thru The Thickness (TTT)
u Tension, Compression and Shear

Ø Sub-Component Level Testing:
u Seam Tension Testing
u TTT Tension Test:  TPS Bonded to Carrier
u 4pt Bend Testing (28 tests)

§ Acreage, seams
§ -175F – RT – 350+F

u LHMEL 4pt Bend Testing (17 tests)
§ Seam structural performance during entry phase

Ø Pyroshock test will be performed at the coupon level
Ø ETU Testing

4-Pt Flexure Rig



1212

LHMEL Testing Overview

Ø Flexural testing in the LHMEL facility 
provides analytical model validation and 
capability demonstration at elevated 
temperatures. 

Ø Round 1 testing completed FY17
Ø Round 2 testing in Oct 2018

u 17 test articles

Laser Pressure 
Chamber

Thick Structural Specimen Post-TestLHMEL II Facility 
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HEEET Aerothermal Testing

Ø Comprehensive set of arcjet testing is performed to:
u Establish system capability:  ~5000 W/cm2 and 5 atm
u Test for failure modes within the system

§ Adhesive bond between Gap Filler and Acreage Tiles is weak link
u Provide data needed to develop and verify material response models and 

margin policies
§ Utilized to design TPS thicknesses

u 6 test campaigns completed, 2 more planned

Acreage

Softened 
HEEET


