National Aeronautics and Space Administration

The NASA GeneLab Project

Sylvain V. Costes, PhD GeneLab Project Manager

Special Seminar Genetics, Genomics, & Systems Biology University of Chicago September 25, 2018

GeneLab

Open Science for Exploration

"...genomics, transcriptomics, proteomics, and metabolomics offer an immense opportunity to understand the effects of spaceflight on biological systems..."

"...Such techniques generate considerable amounts of **data that can be mined and analyzed** for information by multiple researchers..."

Omics Acquisition in Space is Now a Reality

This is truly an exciting time for cellular and molecular biology, omics and biomedicine research on ISS with these amazing additions to the suite of ISS Laboratory capabilities.

Sample Preparation Module

Oxford Nanopore MinION Gene Sequencer

Cepheid Smart Cycler qRT-PCR

GeneLab

Open Science for Exploration

Reaction tube containing lyophilized chemical assay bead (proprietary)

Mini-PCR

GeneLab Team

Phased Implementation

GeneLab

Sequencing cost in 2017

- · Labor, administration, management, utilities, reagents, and consumables
- Sequencing instruments and other large equipment (amortized over three years)
- Informatics activities directly related to sequence production (e.g., laboratory information management systems and initial data processing)
- Submission of data to a public database
- Indirect Costs (<u>http://oamp.od.nih.gov/dfas/faq/indirect-costs#difference</u>) as they relate to the above items

Sboner et al. Genome Biology 2011 12:125 doi:10.1186/gb-2011-12-8-125

From GLDS 2.0 to GLDS 4.0

GLDS Systems Architecture Phase III

Guiding principles to look at GeneLab data

The Radiation Factor

GeneLab

Open Science for Exploration

N	ILLIREM:	
CHEST X-RAY	8 to 50	
AVG. YEARLY RADON DOS	SE 200	L
U.S. AVG. YEARLY DOSE	350	I
PET SCAN	1,000	
1 YEAR IN KERALA, INDIA	1,300	
U.S. NUCLEAR WORKER LIMIT PER YEAR	5,000	
APOLLO 14 (9 DAYS)	1,140	
SHUTTLE 41-C (18 DAYS)	5,600	
SKYLAB 4 (84 DAYS)	17,800	
MARS MISSION TOTAL	130,000	

Source: Brookhaven National Laboratory, U.S. Department of Energy

2½ Years, 2,600 X-Rays

Americans on average absorb the radiation equivalent of at least 7 chest X-rays each year.

Space missions, outside of Earth's protective atmosphere and magnetic field, expose astronauts to many times more.

TRIP TO AND FROM MARS (1 YEAR): 80,000-

NASA

Beheshti et al., Radiation Research 2018

NASA

Beheshti et al., Radiation Research 2018

GeneLab

Open Science for Exploration

GeneLab Analysis Working Groups: Letting the scientific community take the lead

Annual Workshop (April 2018)

GeneLab

Open Science for Exploration

- Monthly meetings + "Homework"
- Deliverables:
 - Consensus pipelines for primary analysis of data (Microarray, RNASeq, Bisulfite sequencing, Proteomics, 16S metagenomics, Whole genome metagenomics)
 - Recommendations for visualization of data

|--|

AWG Members Per Group:										
Animal	47									
Multi-Omics/Syste	em Biology	33								
Plants	24									
Microbes	21									

*Some members are in multiple groups

Publications using GeneLab

Year	Title	Journal	Authors	Status
2017	Validation of Methods to Assess the Immunoglobulin Gene Repertoire in Tissues Obtained from Mice on the International Space Station.	Gravit Space Res.	Rettig TA, Ward C, Pecaut MJ, Chapes SK	Published
2018	A microRNA signature and TGF-β1 response were identified as the key master regulators for spaceflight response	PLoS One	Beheshti A, Ray S, Fogle H, Berrios D, Costes SV	Published
2018	NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies Project: Bridging Space Radiation Omics with Ground Studies	Radiation Research	Beheshti A, Miller J, Kidane Y, Berrios D, Gebre SG, Costes SV	Published
2018	Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A GeneLab case study	Scientific Reports	Beheshti A, Cekanaviciute E, Smith DJ, Costes SV	Published
2018	Exploring the Effects of Spaceflight on Mouse Physiology using the Open Access NASA GeneLab Platform	JoVE	A Beheshti, Y Shirazi-Fard, S Choi, D Berrios, SG Gebre, JM Galazka, SV Costes	Undergoing revision
2018	GeneLab: Omics database for spaceflight experiments	Bioinformatics	S Ray, S Gebre, H Fogle, D Berrios, PB Tran , JM Galazka, S V Costes	Submitted

Cage Effects with rodent experiments: Carbon Dioxide as an Environmental Stressor in Spaceflight

Beheshti A, Cekanaviciute E, Smith DJ, Costes SV. Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study. Sci Rep. 2018;8(1):4191. doi: 10.1038/s41598-018-22613-1. PubMed PMID: 29520055; PMCID: PMC5843582.

Carbon Dioxide as an Environmental Stressor in Spaceflight

A) Cage Types

Animal Enclosure Module (AEM)

A 8

Sample vivarium cage

Beheshti, et al., Scientific Reports, 2018

PCA Plots Suggest Strong Cage Effect

AEM = Animal Enclosure Modules (now referred to as Rodent Habitats) Vivarium = normal ground based rodent cages

Beheshti, et al., Scientific Reports, 2018

Differential Gene Expression: Cage or CO2 Effect?

An increase in aldosterone is associated with metabolic syndrome, which is characterized by chronic inflammation; aldosterone secretion can be triggered by hypoxia.

Beheshti, et al., Scientific Reports, 2018

Systems Biology analysis reveals biological spaceflight master regulators

Beheshti, et al., PLOS One, 2018

GeneLab

Open Science for Exploration

icted Master Regulators

A) Direct

for Key

Connections/

Soleus

GeneLab

Open Science for Exploration

enes and the Connections

B) Connections Between all Key Genes for all Datasets (Flight vs AEM): Radial Plot with the most Connected Gene in the Middle

GF

Genes (ISS) MYL for (ISS) VAV3 Fliaht TGF_{β1} found to be central regulator of key genes TGFβ is known to play a context specific role in sustaining tissue homeostasis predominantly via transcriptional regulation of genes involved in differentiation, cell motility, proliferation, cell survival along with regulating immune responses during homeostasis and infection Previous Studies found reduction in gravitational force to diminish TGF- β expression and apoptosis with higher carcinoembryonic antigen expression in 3D human colorectal carcinoma cells, as compared to 3D cultures in unit gravity. In another study, differential regulation of blood vessel growth using basic fibroblast growth factor was

EDL

(BF)

identified in modeled microgravity with induction early and late apoptosis, extracellular matrix proteins, endothelin-1 and TGFb1 expression

Beheshti, et al., PLOS One, 2018

cted miRNAs Involved with Microgravity Effects

Health Risk Due to miRNAs

Open Science for Exploration

GeneLab

A recent report showed that inactivation of p53 altered TGF-β signaling, which ironically displayed both tumor-suppressive and pro-oncogenic functions. p53 functions to integrate crosstalk between Ras/MAPK and TGF-β signaling via binding to Smad3, dislocating the Smad3/Smad4 complex formation and differentially regulating subsets of TGF-β target genes

Biological Health Risk Increased

Beheshti, et al., PLOS One, 2018

Analysis Working Group (AWG) Member related work determines novel systemic biological factors causing damage due to spaceflight

Work in progress

Goals of Multi-Omics/Sytstems Biology AWG

- Primary Goal: To determine the best pipelines, workflow, and tools to analyze relationships between multiple omics platforms (including: transcriptomic, proteomic, genomics, epigenetic, methylation, miRnome, and metabolomics).
 - Develop pipelines/workflows
 - Develop the optimal visualization tools to implement on GeneLab
- <u>Secondary Goal</u>: To provide the most biological significant data impacting space biology based on the existing GeneLab data from multiple platforms and species. This will be done through an unbiased Systems Biology approach with the optimal tools decided from the Primary Goal to determine the "master switch or regulator" that is affected due to space flight.

Omics Available on GeneLab and Challenges to Overcome

1) Determine, and get consensus for best tools to use for each type of omics and species.

- a) Specific R and python packages
- b) Other platforms (i.e. GenePattern, Galaxy, homemade, etc)
- 2) Determine best approach to correlate cross-platform/omics comparisons.
 - a) Use tools available
 - b) Create own possible tools between collaborations from the AWG members labs and people

3) Use newly created pipeline and tools to analyze existing GeneLab data and develop optimal visualization tools

- a) Create an unbiased Systems Biology analysis pipeline with the determined tools to determine overall master regulator being affected by space flight for each organism on GeneLab (rodents, plants, microbes, invertebrates, and humans)
 - I. First determine individual master regulators for each omic (i.e. Transcriptome, proteins, miRNAs, metabolites, methylated factors, and DNA mutations).
 - II. Then determine through the tools created through cross platform/omics the overall master regulators.
- b) Create an unbiased cross-species analysis to determine overall master regulators that commonly impact all organisms.
- 4) The final tools that were used for the analysis in 3 will be compiled in one group and assessed by the rest of GeneLab
 - a) These tools will include both existing and homemade analysis tools from the people included in the AWG
 - b) The most optimal Visualization tools (both existing and homemade from the AWG members) will be included in our final assessment
 - c) Best Systems Biology approach will be assessed and packaged into an easy to use tool for the community
- 5) Each step will produce at least one to two papers for publication headed by various members of the AWG

1) Determine, and get consensus for best tools to use for each type of omics and species.

- a) Specific R and python packages
- b) Other platforms (i.e. GenePattern, Galaxy, homemade, etc)

2) Determine best approach to correlate cross-platform/omics comparisons.

- a) Use tools available
- b) Create own possible tools between collaborations from the AWG members labs and people

3) Use newly created pipeline and tools to analyze existing GeneLab data and develop optimal visualization tools

- a) Create an unbiased Systems Biology analysis pipeline with the determined tools to determine overall master regulator being affected by space flight for each organism on GeneLab (rodents, plants, microbes, invertebrates, and humans)
 - I. First determine individual master regulators for each omic (i.e. Transcriptome, proteins, miRNAs, metabolites, methylated factors, and DNA mutations).
 - II. Then determine through the tools created through cross platform/omics the overall master regulators.
- b) Create an unbiased cross-species analysis to determine overall master regulators that commonly impact all organisms.
- 4) The final tools that were used for the analysis in 3 will be compiled in one group and assessed by the rest of GeneLab
 - a) These tools will include both existing and homemade analysis tools from the people included in the AWG
 - b) The most optimal Visualization tools (both existing and homemade from the AWG members) will be included in our final assessment
 - c) Best Systems Biology approach will be assessed and packaged into an easy to use tool for the community
- 5) Each step will produce at least one to two papers for publication headed by various members of the AWG

AWG Members Involved

AWG Members Involved

GeneLab

Open Science for Exploration

Chris Mason

Cem Meydan Jonathan Foox

Cornell University.

Flavia Rius

Susana Zanello Scott Smith

Sara Zwart

Afshin Beheshti Sylvain Costes Ames Research Center

34

GeneLab

Open Science for Exploration

Health Risks On Astronauts in Space

EFFECTS OF SPACE ON THE

USA TODAY

SOURCE: NASA Janet Loehrke, USA TODA

GeneLab

Open Science for Exploration

Specific Datasets and Tissues AWG Members Analyzed

- <u>Additional Datasets</u> <u>that are being</u> <u>analyzed:</u>
 - Human datasets
 - GLDS-54, GLDS-174, GLDS-86, GLDS-118, GLDS-53, GLDS-54, GLDS-13. GLDS-52, or GLDS-114 (Tyson McDonald and Yared Kidane)

Lipid Accumulation in the Liver

Level 7: The Body Level 6: Organs

Lipid Accumulation in the Liver And Ion Diffusion

Taurino & Gnoni. Exp Mol Pathol. 2018. Tilg et al. Nat Rev Gastroenterol Hepatol. 2017.

GeneLab Open Science for Exploration

NA SA

Schmidt & Goodwin, Metabolomics (2013). Ballestri et al. World J Gastroenterol. 2014.

RR1 and RR3 Mice

RR1: C57BL/6 mice strain (female)

Diabetes Type 2 induced by High Fat Diet Model:

- Th1 Immune Response (more inflammatory),
- More susceptible to adiposity, liver inflammation, and liver fibrosis

RR3: BALB/c mice strain (female)

- Th2 Immune Response (more tolerogenic),
- More susceptible to liver steatosis
- Radiosensitive

RR1 and RR3 Experimental Detail

RR1 and RR3: Liver Transcriptomics

RR1 Liver (C57BL/6) 181 DE genes adj.P < 0.05

RR3 Liver (BALB/c)

0 DE genes adj.P < 0.05

PC1: 52% variance

55 genes - Overap Unique FLT + DE FLT vs GC

RUFA FUF4 FUF4 FUF5 FUF5 FUF5 FUF5 BSLB7 BSLB7 BSLB8 BSLB8 BSLB8 BSLB8 BSLB8 BSLB8 BSLB8 BSLB8

Willian da Silveira

Gary Hardiman

Brin

RR3 (BALB/c) System Level Analysis

GSEA - G.O Biological Process:

NAME	NOM p-val	FDR q-val
GO_POLYOL_CATABOLIC_PROCESS	0.002	0.21
GO_FOLIC_ACID_CONTAINING_COMPOUND_METABOLIC_PROCESS	0.002	0.20
GO_PTERIDINE_CONTAINING_COMPOUND_METABOLIC_PROCESS	<0.001	0.21
GO_RESPONSE_TO_LEAD_ION	<0.002	0.23
GO_REGULATION_OF_CHROMATIN_SILENCING	<0.003	0.22

Related to eye damage and cataract Risk in <u>Diabetes</u> <u>Type II</u>

Willian da Silveira

Gary Hardiman 4

RR3 (BALB/c) System Level Analysis

Directorate, National Aeronautics and Space Administration Johnson Space Center, Houston, TX

GSEA - G.O Biological Process:

NAME	NOM p-val	FDR q-val
GO_POLYOL_CATABOLIC_PROCESS	0.002	0.21
GO_FOLIC_ACID_CONTAINING_COMPOUND_METABOLIC_PROCESS	0.002	0.20
GO_PTERIDINE_CONTAINING_COMPOUND_METABOLIC_PROCESS	<0.001	0.21
GO_RESPONSE_TO_LEAD_ION	<0.002	0.23
GO_REGULATION_OF_CHROMATIN_SILENCING	< 0.003	0.22

Related to eye damage and cataract Risk in <u>Diabetes</u> Type II

Willian da Silveira

Gary Hardiman 44

RR1 Shared DE Genes

Brin Rosenthal

Kathleen Fisch

RR1 (C57BL/6) All Tissues Network Analysis

RR1 (C57BL/6) : Systems Analysis (GSEA Analysis)

0.0 (S -0.1 () -0.2

Eurichment score (

-0.8

0.0 (SE) -0.2

-0.5

-0.6

-0.7

2,500 5,000 7,500

2 500 5 000

- Enrichment profile - Hits

- Enrichment profile - Hits

RR1 – Adrenal Gland

ENT

Zero cross at 8780

Enrichment plot: REACTOME GLUCOSE METABOLISM

Zero cross at 8780

Rank in Ordered Dataset

Rank in Ordered Dataset

Ground' (negatively correlated)

Ranking metric scores

'Ground' (negatively correlated)

- Ranking metric scores

7.500 10.000 12.500 15.000 17.500

17,500

10,000 12,500 15,000

Willian da Silveira

Gary Hardiman

Kathleen Fisch

48

RR1 – ALL Tissues

Vitamin D Role in Space -Literature

Cite this: Photochem. Photobiol. Sci., 2013, 12, 536

Dietary vitamin D alters the response of the skin to UVB-irradiation depending on the genetic background of the micet

RR3 -BALB/c

R. C. Mallev.*^{a,b} H. K. Muller.^b M. Norval^c and G. M. Woods^{a,b}

		BALB/c						
		D+	D-					
/	Male	112 ± 14	21 ± 3					
RR1 -		(n = 14)	(n = 17)					
	Female	110 ± 24	20 ± 5					
C5/BL/6		(n = 12)	(n = 23)					
		C57BL/6						
		D+	D-					
	Male	137 ± 32^{a}	17 ± 5^b					
		(n = 14)	(n = 24)					
	Female	129 ± 34^{a}	15 ± 5^b					
		(n = 18)	(n = 24)					

GeneLab

Open Science for Exploration

Mean ± SD, nmol L-1

Strains of mice differ in their ability to be suppressed by UVB irradiation: **BALB/c** mice are considered **"sensitive"** and **C57BL/6 "resistant"**. (The) results indicate that dietary vitamin D3 can reduce UVB-induced suppression of the contact hypersensitivity response depending on the genetic background of the mice.

(Endocrinology 150: 1051-1060, 2009)

Vitamin D Deficiency Modulates Graves' Hyperthyroidism Induced in BALB/c Mice by Thyrotropin Receptor Immunization

Alexander Misharin, Martin Hewison, Chun-Rong Chen, Venu Lagishetty, Holly A. Aliesky, Yumiko Mizutori, Basil Rapoport, and Sandra M. McLachlan

In conclusion, we found a strain-specific difference in handling vitamin D, with BALB/c mice having reduced ability (compared with C57BL/6 mice) to generate the active metabolite.

Willian da Silveira

Vitamin D Role in Space

IN the journal of nutrition

The Nutritional Status of Astronauts Is Altered after Long-Term Space Flight Aboard the International Space Station¹

Scott M. Smith,*² Sara R. Zwart,* Gladys Block,[†] Barbara L. Rice,** and Janis E. Davis-Street**

*Human Adaptation and Countermeasures Office, NASA Lyndon B. Johnson Space Center, Houston, TX 77058; [†]Epidemiology and Public Health Nutrition, University of California-Berkeley, Berkeley, CA 94720; and **Enterprise Advisory Services, Inc., Houston, TX 77058

Despite vitamin D supplement use during flight, serum 25-hydroxycholecalciferol was decreased after flight (P < 0.01).

Molecular and Cellular Endocrinology 450 (2017) 24-31

Spotlight on vitamin D receptor, lipid metabolism and mitochondria: Some preliminary emerging issues

Francesca Silvagno*, Gianpiero Pescarmona

Vitamin D Receptor has been defined a <u>gatekeeper of mitochondrial respiratory</u> chain activity.

Willian da Silveira

Gary Hardiman

Vitamin D acts to prevent diabetes by maintaining low levels of Ca²⁺ and ROS. Berridge, 2017

🖗 nutrients

Review

Vitamin D Supplementation and Non-Alcoholic Fatty Liver Disease: Present and Future

Ilaria Barchetta, Flavia Agata Cimini and Maria Gisella Cavallo *

Epidemiological studies point towards an association between hypovitaminosis D and the presence of NAFLD and steatohepatitis (NASH), independently of confounders such as obesity and insulin resistance.

Circadian Rhythm, Vitamin D, and Mitochondria

Antioxid Redox Signal. 2014 Jun 20; 20(18): 2982–2996. doi: 10.1089/ars.2013.5645 PMCID: PMC4038996 PMID: 24111846

Skin, Reactive Oxygen Species, and Circadian Clocks

Mary A. Ndiaye,¹ Minakshi Nihal,¹ Gary S. Wood,^{1,,2} and Nihal Ahmad^{II,,2}

Author information
Article notes
Copyright and License information
Disclaimer

This article has been cited by other articles in PMC.

Abstract

Go to: 🕑

Significance: Skin, a complex organ and the body's first line of defense against environmental insults, plays a critical role in maintaining homeostasis in an organism. This balance is maintained through a complex network of cellular machinery and signaling events, including those regulating oxidative stress and circadian rhythms. These regulatory mechanisms have developed integral systems to protect skin cells and to signal to the rest of the body in the event of internal and environmental stresses. Recent Advances: Interestingly, several signaling pathways and many bioactive molecules have been found to be involved and even important in the regulation of oxidative stress and circadian rhythms, especially in the skin. It is becoming increasingly evident that these two regulatory systems may, in fact, be interconnected in the regulation of homeostasis. Important examples of molecules that connect the two systems include serotonin, melatonin, vitamin D, and vitamin A. Critical Issues: Excessive reactive oxygen species and/or dysregulation of antioxidant system and circadian rhythms can cause critical errors in maintaining proper barrier function and skin health, as well as overall homeostasis. Unfortunately, the modern lifestyle seems to contribute to increasing alterations in redox balance and circadian rhythms, thereby posing a critical problem for normal functioning of the living system. Future Directions: Since the oxidative stress and circadian rhythm systems seem to have areas of overlap, future research needs to be focused on defining the interactions between these two important systems. This may be especially important in the skin where both systems play critical roles in protecting the whole body. Antioxid. Redox Signal. 20, 2982-2996.

Antioxid Redox Signal

GeneLab

Open Science for Exploration

RR3 - EYE (BALB/c) : Up-regulated: Functional Annotation Clustering

Most up-regulated Gene:

GeneLab

Gene: Defb7 (ENSMUSG0000037790.3) **Role**: Beta-defensin 7 has bactericidal activity and is involved in defense response to bacteria **Log₂ fold-change**: 22 **Adjusted p-value**: 2.94e-7

Open Science for Exploration

otation Cluster 1	Enrichment Score: 8.69	G		11 No. 1	Count	P_Value	Benjamini	
M_BP_FAT	fatty acid metabolic process	RT	=		17	1.9E-10	2.1E-7	
LEYWORDS	lipid metabolism	RT	=		15	2.0E-10	1.7E-8	
LEYWORDS	fatty acid metabolism	RT	=		10	1.6E-8	7.9E-7	
PATHWAY	PPAR signaling pathway	RT	=		12	2.9E-8	2.5E-6	
otation Cluster 2	Enrichment Score: 7.69	G			Count	P_Value	Benjamini	
M_CC_FAT	peroxisome	RT	-		17	6.4E-14	8.9E-12	
M_CC_FAT	microbody	RT	=		17	6.4E-14	8.9E-12	
LEYWORDS	peroxisome	RT	=		15	1.6E-12	4.2E-10	
M_CC_FAT	microbody part	RT	=		8	5.6E-8	3.9E-6	
M_CC_FAT	peroxisomal part	RT	=		8	5.6E-8	3.9E-6	
M_CC_FAT	peroxisomal membrane	RT	=		6	1.1E-5	2.3E-4	30
M_CC_FAT	microbody membrane	RT	=		6	1.1E-5	2.3E-4	
Q_FEATURE	short sequence motif:Microbody targeting signal	RT	=		6	1.5E-4	3.8E-2	Kathryn
M_BP_FAT	peroxisome organization	RT	a		4	1.5E-3	6.0E-2	Grabek
otation Cluster 3	Enrichment Score: 4.64	G		1	Count	P_Value	Benjamini	
M_MF_FAT	carboxylic acid binding	RT	=		11	5.5E-8	1.0E-5	
M_MF_FAT	vitamin binding	RT	=		10	1.2E-5	1.5E-3	
M_MF_FAT	amino acid binding	RT	E (1)		5	5.7E-4	2.1E-2	6.1
M_MF_FAT	amine binding	RT	=		6	7.3E-4	2.2E-2	Helio
								-

 $\operatorname{Costa}_{52}$

RR3 - EYE (BALB/c) : GSEA Analysis

					En	ri	ch	m	e	nt	pl	ot	:							_		
	REA	ACT	ON	1E_		N	_	CH	A	N	NE	.		R	AI	12	5F	0	R	r		
0.0																						r
-0.1																				ſ	١	
-0.2			~	\sim	~															F		
-0.3						`	~												,	N		
									5										Ĺ			
-0.4											-											
-0.5													-	4	_			1				
-0.6			1.1		1	1											-					
1 75											1		1							ï		
1.50	light i	positi	reiy c	onei	ated	,																
1.25																						
100		_	_	_	_		z	lero	cros	s at	905	1										
1.25																						
1.60											Gro	und	' (n	ga	tive	ly c	on	elat	ed)			1
0		2,500)	5,00	00	8	7,5 Rar	ioo 1k ii	n O	10 rde	,oo rec	o I Da	1 ata:	2,5 set	00		15	5,00	0	1	7,5	00

NAME	NOM p-val	FDR q-val
GO_FOLIC_ACID_CONTAINING_COMPOUND_METABOLIC_PROCESS	0.003	0.01
GO_POLYOL_METABOLIC_PROCESS	0.014	0.17
GO_DETECTION_OF_LIGHT_STIMULUS	<0.001	<0.001
REACTOME_ION_CHANNEL_TRANSPORT	<0.001	0.01
REACTOME_INSULIN_SYNTHESIS_AND_PROCESSING	0.044	0.18
KEGG_FATTY_ACID_METABOLISM	<0.001	0.003

A 9

Willian da Silveira

Gary Hardiman

Kathryn Grabek

Helio Costa₅₃

GeneLab Open Science for Exploration

Analysis Relating Liver to the Eye

Overcoming Batch Effects: RR3 – Liver: Proteomics

Data processing: PCA plot of normalized & ComBat treated data

Normalized to the proteins of the baseline samples (B)

G1 and F3 seem to be outliers. I removed these two samples for the further analysis.

Deanne Taylor

Hossein Fazelinia

Flight Ground Basel

Significantly Expressed Protein RR3 – Liver: Proteomics

T-test analysis with %5 FDR

Heat map of significantly changed proteins

Deanne Taylor

Hossein Fazelinia

Protein Pathway Analysis RR3 – Liver: Proteomics

Data processing: GO term analysis for significant proteins

#	Molecular functions	Min FDR	In Data	#	Processes	Min FDR	In Data	#	Localizations	Min FDR	In Data
1	RNA binding	1.471E-09	25		small molecule metabolic process	1.496E-06	6 25		lcytoplasm	1.491E-10	63
2	catalytic activity	8.716E-08	42		aromatic compound catabolic process	1.496E-06	5 13		2cytoplasmic part	1.799E-08	52
3	heterocyclic compound binding	1.472E-05	38		peptide metabolic process	8.235E-06	6 14		3macromolecular complex	1.349E-07	37
4	ATP binding	1.472E-05	18		uronic acid metabolic process	8.568E-00	5 5		inner mitochondrial membrane protein complex	2.003E-07	8
5	small molecule binding	1.472E-05	24		glucuronate metabolic process	8.568E-06	5 5		5intracellular organelle part	2.489E-07	48
6	organic cyclic compound binding	1.478E-05	38		cellular amide metabolic process	1.024E-05	5 15		organelle part	5.429E-07	48
7	adenyl ribonucleotide binding	1.478E-05	18		protein targeting	1.075E-05	5 10		mitochondrial protein complex	5.429E-07	8
8	adenyl nucleotide binding	1.478E-05	18		organic acid metabolic process	1.075E-05	5 17		Bribonucleoprotein complex	5.429E-07	15
9	purine ribonucleoside triphosphate binding	3.401E-05	19		carboxylic acid metabolic process	1.075E-05	5 16		intracellular ribonucleoprotein complex	3.692E-06	14
10	anion binding	3.742E-05	24	1	organic cyclic compound catabolic process	1.075E-05	5 12	1	mitochondrial part	4.006E-06	15
11	purine ribonucleotide binding	3.742E-05	19	1	cellular amino acid metabolic process	1.681E-05	5 10	1	intracellular part	4.006E-06	63
12	ATPase activity	3.742E-05	10	1:	cellular catabolic process	1.752E-05	5 21	1	mitochondrial membrane part	4.006E-06	8
13	purine nucleotide binding	3.742E-05	19	1	translation	2.470E-05	5 11	1	3mitochondrial inner membrane	4.038E-06	11
14	ribonucleotide binding	3.742E-05	19	1.	ysosomal membrane organization	2.709E-05	5 3	1	organelle inner membrane	1.103E-05	11
15	ATPase activity, coupled	4.245E-05	9	1	purine ribonucleoside triphosphate metabolic process	2.709E-05	59	1	5intracellular	1.315E-05	63
16	carbohydrate derivative binding	9.412E-05	20	1	oxoacid metabolic process	2.709E-05	5 16	1	amitochondrial membrane	1.725E-05	12
17	nucleotide binding	9.412E-05	20	1	metabolic process	2.713E-05	5 53	1	organelle envelope	2.340E-05	15
18	nucleoside phosphate binding	9.412E-05	20	1	ribonucleoside triphosphate metabolic process	2.787E-05	5 9	1	Benvelope	2.340E-05	15
19	monocarboxylic acid binding	9.412E-05	5	1	purine nucleoside triphosphate metabolic process	2.787E-05	5 9	1	9mitochondrial envelope	2.492E-05	12
20	ceramide-translocating ATPase activity	1.267E-04	2	2	cellular metabolic process	2.904E-05	5 50	2	myelin sheath	2.492E-05	7

Protein Pathway Analysis RR3 – Liver: Proteomics

Data processing: GO term analysis for significant proteins

#	Molecular functions	Min FDR	In Data	#	Processes	Min FDR	In Data	#	Localizations	Min FDR	In Data	ľ.
1	RNA binding	1.471E-09	25		small molecule metabolic process	1.496E-06	25	1	cytoplasm	1.491E-10	63	
2	catalytic activity	8.716E-08	42		aromatic compound catabolic process	1.496E-06	13	2	cytoplasmic part	1.799E-08	52	
3	heterocyclic compound binding	1.472E-05	38		apeptide metabolic process	8.235E-06	5 14	3	macromolecular complex	1.349E-07	37	
4	ATP binding	1.472E-05	18		uronic acid metabolic process	8.568E-06	5	4	inner mitochondrial membrane protein complex	2.003E-07	8	
Ę	small molecule binding	1.472E-05	24		glucuronate metabolic process	8.568E-06	5 5		intracellular organelle part	2.489E-07	48	
6	organic cyclic compound binding	1.478E-05	38		cellular amide metabolic process	1.024E-05	15		organelle part	5.429E-07	48	
7	adenyl ribonucleotide binding	1.478E-05	18		protein targeting	1.075E-05	5 10		mitochondrial protein complex	5.429E-07	8	
8	adenyl nucleotide binding	1.478E-05	18		Borganic acid metabolic process	1.075E-05	5 17		ribonucleoprotein complex	5.429E-07	15	
9	purine ribonucleoside triphosphate binding	3.401E-05	19		carboxylic acid metabolic process	1.075E-05	16	9	intracellular ribonucleoprotein complex	3.692E-06	14	
10	anion binding	3.742E-05	24	1	organic cyclic compound catabolic process	1.075E-05	12	10	mitochondrial part	4.006E-06	15	
11	purine ribonucleotide binding	3.742E-05	19	1	cellular amino acid metabolic process	1.681E-05	10	11	intracellular part	4.006E-06	63	
12	ATPase activity	3.742E-05	10	1	cellular catabolic process	1.752E-05	21	12	mitochondrial membrane part	4.006E-06	8	
13	purine nucleotide binding	3.742E-05	19	1	3translation	2.470E-05	11	13	mitochondrial inner membrane	4.038E-06	11	
14	ribonucleotide binding	3.742E-05	19	1	Visosomal membrane organization	2.709E-05	3	14	organelle inner membrane	1.103E-05	11	
15	ATPase activity, coupled	4.245E-05	9	1	purine ribonucleoside triphosphate metabolic process	2.709E-05	9	15	intracellular	1.315E-05	63	
16	carbohydrate derivative binding	9.412E-05	20	1	oxoacid metabolic process	2.709E-05	16	16	mitochondrial membrane	1.725E-05	12	
17	nucleotide binding	9.412E-05	20	1	metabolic process	2.713E-05	53	17	organelle envelope	2.340E-05	15	
18	nucleoside phosphate binding	9.412E-05	20	1	ribonucleoside triphosphate metabolic process	2.787E-05	9	18	envelope	2.340E-05	15	
19	monocarboxylic acid binding	9.412E-05	5	1	purine nucleoside triphosphate metabolic process	2.787E-05	9	19	mitochondrial envelope	2.492E-05	12	
20	ceramide-translocating ATPase activity	1.267E-04	2	2	cellular metabolic process	2.904E-05	50	20	myelin sheath	2.492E-05	7	1

Related mitochondria functions are revealed from the initial proteomic analysis!!

Protein Pathway Analysis RR3 – Liver: Proteomics

Related mitochondria functions are revealed from the initial proteomic analysis!!

GeneLab Open Science for Exploration

Preliminary Methylation Data for RR1

	ch	r10 ¶/	AT (1A2 q	A3	qA4		ЧБТ	q	<mark>В2 у</mark> в.	,	qB4 qb5.	ЧD		- (<mark>1C1</mark>	(1C2 qC5	գւ	,		qD2		qD3
	•	1	73,814 kb 	I	73,816 k 	¢b	1	73,818 kb 		73,820 kt	b	19 kb 73,822 kb	1	7	3,824 kb)	73,8	26 kb	73,828 	kb	1	73,830 kt	b	7
Refseq genes														,	·	, ,	,	, , Pcdh1		,	, ,		F	\rightarrow
RR3 Liver Basal	=	I	Ш					Ш		111	I		•	H	I							I	Ш	11-1
RR3 Liver Ground	=	I		I	I	1111	Ш	Ш		111	I			H	I							I		11.1
RR3 Liver Flight		I		I	I			Ш		111	I			H	I							I		11-1
RR1 Liver Ground Frozen			L L		I		П			II		1				11-1		18	I	П			Ш	11.1
RR1 Liver Flight Frozen			11		I		П			III			I	11				11	I				Ш	11-1

-66% 0 66%

Deviation from the mean methylation

Deviation from mean separate for each experiment

Chris Mason Cem Meydan Jonathan Fogx

Hypothesis Developed and Being Worked On

- Spaceflight changes the physical properties of the cell components impacting from the molecular to the whole body level.
- The Mitochondria are the principal cellular component affect. •
- The Liver is the principal organ affected in issues related to the metabolism.
- **Overall circadian rhythm pathways are being disrupted**
- Possible disease that can be associated with liver damage and pathways is: Oculocerebrorenal Syndrome of Lowe
 - "Extensive research has demonstrated that OCRL-1 is involved in multiple intracellular processes involving endocytic trafficking and actin skeleton dynamics. This explains the multi-organ manifestations of the disease."
 - "The classic form of the oculocerebrorenal syndrome of Lowe (OMIM #309000), first described by Lowe et al. in 1952 [1], is characterized by the triad of congenital cataracts, severe intellectual impairment, and renal tubular dysfunction with slowly progressive renal failure"
 - Patients with this disease manifest Cataract. Glaucoma and Muscle hypotonia.

Mehta, Zenobia B et al. "The Cellular and Physiological Functions of the Lowe Syndrome Protein OCRL1." Traffic (2014). 61

Hypothesis Developed and Being Worked On (Ion Diffusion)

Assumptions:

- Gravity is a physical property.
- Alteration in Gravity must have a primary impact in physical properties of a cell, like ion diffusion.
- Eletrostatics properties of proteins influence protein-protein interaction and/or protein folding, the same can happen with RNA strutures.
- lons are critical for Eletrostatics properties of the proteins, RNAs and etc.

Hypotheses:

- By altering Ion Diffusion, microgravity can influence cellular events by altering Protein-Protein Interaction and "Binding", Protein folding and RNA structures what would influence RNA splicing.
- Is expected that other Physiological properties dependent of Ion diffusion will be impacted too.

http://elte.prompt.hu/sites/default/files/tananyagok/IntroductionToPracticalBioche mistry/ch05s04.html https://step1.medbullets.com/biochemistrv/102094/protein-folding-anddegradation

Hypothesis Developed and Being Worked On (Ions and Mitochondria)

Figure 11-4b Molecular Biology of the Cell 6e (© Garland Science 2015)

Mitochondria – All Cells

Molecular Biology of the Cell, Garland Science; 5th edition. 2007.

 Mitochondria can be disrupted by one single particle traversal in one single mitochondria and create a cascade of event, including oxidative stress lasting several days in the exposed cell

Systems Biology Analysis Used to Understand Spaceflight Impact on Health Risk

Visualization Tools to Implement on GeneLab Platform

NASA

Visualization Tools to Implement on GeneLab Platform

Other Open

Members of G-Tex have offered to help with development of G-Tex for our GeneLab platform. Multi-Omics AWG member helped make the connection with G-Tex MetaSub

IPA	iPathwayGuide	Blast2Go	TOAST
In the second se	Visited State (State State	BIGE (2GO HIGH-SCALITY FUNCTIONAL ANNOTATION RECEIPT	Appendix Of the Appendix Of th
A constraint of the second sec	approximativations in a languardinataria i terreraria i terreraria i terreraria terrerari terreraria terreraria terreraria terrera	In the Constant of the Constan	

Engage broadest community of researchers, industry, and citizen scientists to advance innovations

https://genelab.nasa.gov

- · Weekly social media posts:
 - @NASAAmes Facebook
 - Twitter #GeneLab 😏
 - ResearchGate: <u>https://www.researchgate.net/project/Omics-for-Space-Biology-The-GeneLab-project</u>
- GeneLab database listed in science journals:

GeneLab

Open Science for Exploration

- Scientific Data, Oxford e-Research
- GeneLab issues Digital Object Identifiers (DOI) via DataCite
- Customer Support: Respond and resolve all inquiries from science community, academia, public

- Conferences, Workshops, & Public Outreach Events

- ASGSR: Presentations, Galaxy platform training sessions
- AMIA: Learning Showcase Spotlight on GeneLab
- AAAS: Session NASA's GeneLab Project and the Systems Biology of Spaceflight
- COSPAR, ISSR&D: Presentations

Open Science for Exploration

GeneLab

- Experimental Biology, Plant Biology, Cell Biology, ASM Microbe: Exhibit booths
- BioData West Open Targets: Workshop & Data-thon
- California Academy of Sciences, San Francisco Exploratorium

Social Media, Website, Newsletter, Podcasts, Videos

- Facebook, Twitter, ResearchGate, LinkedIn (weekly posts)
- New Drupal Website (rollout Sept. 28); links to NASA portal, Space Biology
- Quarterly newsletter (700 subscribers)
- NASA Silicon Valley Podcasts
- New GeneLab" video in collaboration with ISS Program Science Office
- GeneLab User Training videos (Oct. 31)

SciComm- Increase Users of the GeneLab Data Repository

- Seminars, Webinars

GeneLab

Open Science for Exploration

- Broad Institute, JPL, JSC, UC San Diego, Stanford, Osaka City Univ Japan, CSA
- LabRoots, Genes in Space
- SciComm Publication
 - NASA's Researcher's Guide to GeneLab
- Internship
 - GeneLab for High Schools
 - Space biology training initiative for high school students on teaching the importance of omics studies and space biology. Students analyze GeneLab datasets and develop research proposals.

