

Mitochondrial oxidative stress: importance for skeletal structure and responses to simulated spaceflight

Presented by Joshua Alwood:

A-S. Schreurs, S. Torres, T. Truong, E. L. Moyer, A. Kumar, C. G. Tahimic, J.S. Alwood and R.K.Globus

NASA Ames Research Center Space Biosciences Division

ASGSR 2016; Rodent #1

Spaceflight conditions lead to bone loss

Hypothesis & Experimental Approach

Hypothesis: Excess reactive oxidative species (ROS) alters the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss, resembling aging.

mCAT mouse transgenic model: over-express human catalase gene targeted to mitochondria, the major organelle contributing free radicals:

- -improved longevity
- -reduced cardiovascular degeneration and other age-related disease
- -radioprotection in the brain
- -interference with osteoclast maturation and bone resorption (conditional expression)

Use mCAT transgenic and wildtype mice to test role of ROS:

- Intrinsic: compare phenotype of mCAT vs WT mice (untreated)
- Extrinsic: compared responses to treatment of 'simulated spaceflight', known to lead to excess ROS

Bone remodeling:

Balance between bone resorption and bone formation

Experiment designs

Experimental details:

- Male, 16wk old (n=7-9/group)
- Mice strains: WT (C56BL/6NJ) and mCAT littermates
- Total Body Irradiation: ¹³⁷Cs 200 cGy (0.83 Gy/min)
- Hindlimb-Unloading on day 0, IR on day 3 and tissue harvest on day
 14

• mCAT mice expressed the transgene in both skeletal tissue (A) and marrow-derived cultures of osteoblast (B) and osteoclast precursors (C)

Bone shaft

Osteoblast cells

• mCAT mice has 3-4-fold greater catalase enzymatic activity compared to WT mice in bone (D), osteoblastic cultures (E) and osteoclast precursors (F)

Osteoclast precursors

•Oxidative damage was assessed in mineralized tissue using malondialdehyde (A, MDA) levels and 4-Hydroxynonenal (B, HNE)

mCAT model mice validation: Treatment increased oxidative damage in WT but not mCAT mice

a: p<0.017 between WT untreated and mCAT untreated b: p<0.017 between WT untreated and treated c: p<0.017 between mCAT untreated and treated

•Oxidative damage was assessed in mineralized tissue using malondialdehyde (A, MDA) levels and 4-Hydroxynonenal (B, HNE)

Skeletal structure: Cancellous Phenotype of WT vs mCAT: reduced bone volume

a: p<0.017 between WT untreated and mCAT untreated
b: p<0.017 between WT untreated and treated
c: p<0.017 between mCAT untreated and treated

Untreated mCAT mice show lower bone compared to WT mice in percent bone volume (BV/TV, -16%) and trabecular numbers (Tb.N, -18%, not shown)

Skeletal structure: Cancellous Treatment effect: Bone loss in both WT and mCAT mice

Both the WT and mCAT mice showed significant cancellous bone loss after.

Cortical structure: mCAT bones were smaller than WT bones (despite same body weights)

Untreated WT mice

Untreated mCAT mice

Skeletal structure: Cortical

Skeletal structure: Cortical Genotype WT vs mCAT: radial expansion in mCAT mice

Interestingly, the mCAT mice displayed radial growth in cortical bone after treatment

Note: Radial expansion also occurs during periods of either rapid modeling (skeletal growth) and during skeletal aging (compensatory response)

Summary & Conclusions

- mCAT mice overexpress transgene in both osteoblast and osteoclast lineage cells, providing useful animal model to determine:
 - importance of normal mitochondrial ROS and bone phenotype (intrinsic)
 - quenching excessive ROS and oxidative damage (extrinsic)
- Long bones (not vertebrae) from mCAT mice are smaller than WT mice, despite comparable body weights
 - endogenous mitochondrial ROS is important for normal bone remodeling and skeletal structure
- Overexpression of catalase in mitochondria disrupts cortical remodeling responses to the challenges of simulated spaceflight;
- we speculate that quenching endogenous mitochondrial ROS removes a 'brake' on remodeling activity and allows radial expansion during treatment

Acknowledgements

Bone & Signaling Lab NASA Ames Research Center Moffett Field, CA

Funding

NSBRI Grant #MA02501 DOE-NASA Interagency Award #DE-SC0001507 NASA Postdoctoral Program – Space Biology

