# Java Architecture for Detect-and-Avoid (DAA) Extensibility and Modeling (JADEM) and its applications

Michael Abramson



# **Background**

- The U.S. Congress mandates the "safe integration" of Unmanned Aerial Systems (UAS) in the National Air Space (NAS) beginning in September 2015.
- The FAA aviation rulemaking committee is looking into amending Part 91.113 that prescribes aircraft right-of-way rules, to allow for an electronic "Detect-and-Avoid" (DAA) system enabling UAS to steer clear of potential collisions with other aircraft.
- Radio Technical Commission for Aeronautics (RTCA) is developing the technological requirements and Minimum Operational Performance Standards (MOPS) for a UAS DAA System.



# **Background**

# UAS Integration in the NAS Project

- FAA
- NASA
  - NASA Ames Research Center: simulations
    - Separation Assurance / SAA Interoperability (SSI) - research & algorithms
    - Human Systems Integration (HSI)
    - Integrated Test and Evaluation
  - NASA Langley and Armstrong Centers
- Air Force
- MIT
- Others



#### **JADEM**

# Java Architecture for Detect-and-Avoid (DAA) Extensibility and Modeling (JADEM)

DAA algorithms and simulation platform for:

- Close-loop sims for NAS-wide and parametric studies
  - JADEM simulator
- Human-in-the-Loop (HitL) sims and flight tests
  - interface with NASA Live Virtual Constructive –
     Distributed Environment (LVC-DE)



#### **GRACE**

# Generic Resolution Advisor and Conflict Evaluator (GRACE) is needed

- to research the effect of specific features of DAA algorithms (separation standards, maneuvers, right-of-way rules, resolution consistency, etc.)
- to research interoperability between different DAA subsystems and algorithms
- to evaluate different types of guidance: directive guidance, Omni-Bands, Well-Clear Recovery (WCR)
- to study the impact of aircraft modeling and trajectory prediction errors on performance of DAA system
- as a backup conflict resolver for simulations



#### **GRACE**

# Key ideas

- Open architecture
  - Use any suitable Trajectory Predictor
  - User-defined separation standards, maneuvers, and cost functions
- Grid-based mapping for conflict detection (alerting)
- Force field theory for conflict resolution (guidance)
  - Charged particles analogy



#### **ALERTING**

#### Customizable threat evaluation criteria

- Horizontal separation
- Horizontal Miss Distance (HMD)
- Vertical separation
- Tau-separation
  - modified tau
  - altitude-dependent tau as defined by TCAS sensitivity levels
- Time to co-altitude (vertical tau)
- Time to separation as a filtering condition.



### **ALERTING**

| Symbol | Name                    | Pilot Action                                                                                                                                                   | Buffered Well<br>Clear Criteria                                       | Alerting Time<br>Threshold              | Aural Alert<br>Verbiage       |
|--------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|-------------------------------|
| A      | TCAS RA                 | <ul> <li>Immediate action required</li> <li>Comply with RA sense and vertical rate</li> <li>Notify ATC as soon as practicable after taking action</li> </ul>   | (Driven by TCAS-II)                                                   | X                                       | "Climb/Desc<br>end"           |
|        | DAA Warning<br>Alert    | <ul> <li>Immediate action required</li> <li>Notify ATC as soon as practicable after taking action</li> </ul>                                                   | DMOD = 0.75 nmi<br>HMD = 0.75 nmi<br>ZTHR = 450 ft<br>modTau = 35 sec | 25 sec<br>(TCPA approximate:<br>60 sec) | "Traffic,<br>Maneuver<br>Now" |
|        | DAA Corrective<br>Alert | <ul> <li>On current course, corrective action required</li> <li>Coordinate with ATC to determine an appropriate maneuver</li> </ul>                            | DMOD = 0.75 nmi<br>HMD = 0.75 nmi<br>ZTHR = 450 ft<br>modTau = 35 sec | 55 sec<br>(TCPA approximate:<br>90 sec) | "Traffic,<br>Avoid"           |
|        | DAA Preventive<br>Alert | <ul> <li>On current course, corrective action should not be required</li> <li>Monitor for intruder course changes</li> <li>Talk with ATC if desired</li> </ul> | DMOD = 1.0 nmi<br>HMD = 1.0 nmi<br>ZTHR = 700 ft<br>modTau = 35 sec   | 55 sec<br>(TCPA approximate:<br>90 sec) | "Traffic,<br>Monitor"         |
| A      | Remaining Traffic       | No action expected                                                                                                                                             | Within<br>surveillance field<br>of regard                             | X                                       | N/A                           |

<sup>\*</sup> These values show the Protection Volume (well clear volume) at MSL 5000-10000ft (TCAS Sensitivity Level 5)



#### **DIRECTIVE GUIDANCE**

# Standard Maneuvers (SM)

- 1. Right turn
- 2. Left turn
- 3. Increased vertical speed / pitch (faster climb or slower descent)
- 4. Reduced vertical speed / pitch (slower climb or faster descent)
- 5. Reduced speed (decelerate / slow down)
- 6. Increased speed (accelerate / speed up)

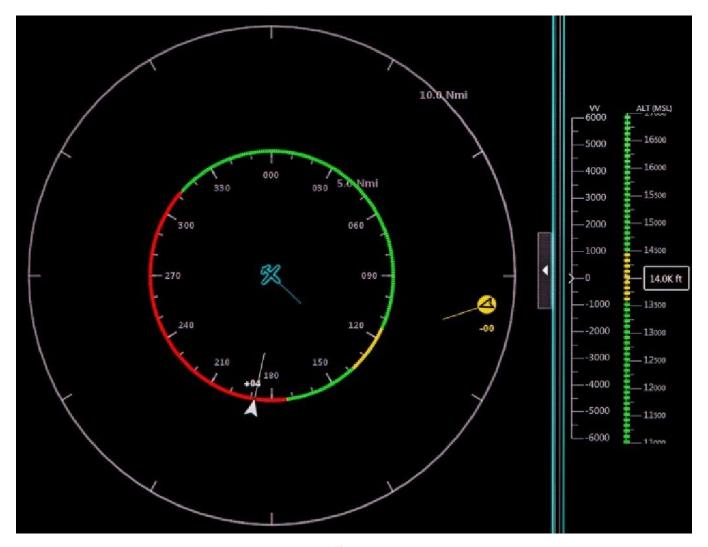


#### **DIRECTIVE GUIDANCE**

#### Solution costs

- Rank cost (right turn has the lowest cost)
  - favors right-of-way compliant maneuvers
- Maneuver cost
  - penalizes too aggressive maneuvers
- Maneuver change cost
  - penalizes frequent changes of maneuvers
- Collision threat cost
  - naturally dominates over others when close to collision
  - rapidly decreases as a function of distance to intruder at CPA relative to NMAC limit




#### **OMNI-BANDS**

Omni-directional suggestive guidance for all intruders shown as the color-coded "bands" Three-step algorithm powered by GRACE (heading bands)

- 1. Determine potential threats by finding the intruders that can be reached (intercepted) by ownship;
- 2. Find bands for each of these threats from GRACE maneuvers for right and left turns;
- Assemble the OmniBands for all intruders using set-theoretic operations over bands for individual threats.



### **OMNI-BANDS**





# **WELL-CLEAR RECOVERY (WCR)**

- WCR guidance indicates to the pilot the "best" maneuver to restore the Well Clear
- Relies on GRACE maneuvers
- Presented as a "wedge" at pilot's display
  - the low bound is the lowest value of control variable needed for a timely recovery from loss of Well Clear
  - the high bound is GRACE maneuver limit
  - both bounds are snapped to a specified grid
  - the difference between high and low bounds cannot be smaller than a configurable minimal wedge width



# **WELL-CLEAR RECOVERY (WCR)**





#### **CURRENT STATUS**

# Support for Requirements of Phase 1 of UAS Integration Project

- Alerting Logic per MOPS
- Guidance:
  - directive
  - Omni-Bands / WCR
- Integrated High-Fidelity Surveillance Model with Noisy Sensors
- Integrated TCAS Module
- Support for TCAS Interoperability Requirements
- Developed Pilot Models for directive and Omni-Bands / WCR guidance



#### **CURRENT STATUS**

Preparing for Phase 2 of UAS Integration Project

- Refactoring
- Optimization
- Data Analysis Tools
   Writing a Paper on GRACE
   Exploring Applications beyond MOPS

