

NASA Operational Simulator for Small Satellites

Mark Suder Mark.D.Suder@nasa.gov

www.nos3.org

Overview

- JSTAR ITC Introduction
- STF-1 and NOS³
- Components
- Architecture
- Hardware Model
- Build System
- Demonstration

NASA IV&V – JSTAR ITC

• Acquire, develop, and manage adaptable test environments that enable the <u>dynamic</u> analysis of software behaviors for multiple NASA missions .

Simulation To Flight - 1

- First CubeSat from West Virginia
- Current launch ready date is April 2017
- ITC team:
 - C&DH, FSW, Integration, and Testing
- West Virginia University:
 - CSEE, GPS, IMU, and Space Weather
- Primary Objective
 - Showcase simulation technologies developed at NASA IV&V while demonstrating and improving utility from concept to operations.
- Secondary Objectives
 - WVU Research Payloads

NASA Operational Simulator for Small Satellites

- Uses:
 - Early Development
 - Integration
 - Mission Planning
 - Training
 - Verification and Validation
- Simulated Components:
 - Cadet UHF Radio
 - Clyde Space Batteries / EPS
 - Generic Science
 - GomSpace Nanomind A3200 Sensors
 - ISISpace Antenna
 - Novatel GPS

Components

open source

- 42, Dynamics Simulation and Visualization
- cFS, Core Flight System
- COSMOS, Ground Station Software
- Vagrant
- Virtual Machine
- FSW Hardware Abstraction Layer
- Hardware Simulators
- NOS Engine Middleware
- Orbit Inview & Power Prediction (OIPP) ToolScripts

Architecture

Hardware Model

Build System

Framework for Spacecraft Security

- Simulation Test Bed for Security Technologies
- Realistic Spacecraft Operations End-to-End
- CryptoLib integration design complete
 - Will demonstrate AES encryption on the downlink
 - Software encryption no specialized hardware needed
 - Integrates with cFS
 - Coding has started, will wrap up by September
- Demonstrates Real-World Standards Based Spacecraft Security
 - Does not have to be expensive
 - Does not have to be time consuming
 - Can be applied to both large and small systems

Questions?

NASA Operational Simulator for Small Satellites

Mark Suder Mark.D.Suder@nasa.gov

www.nos3.org

Backup

File Machine View Input Devices Help

