

Robotic External Leak Locator (RELL) leak plume field detection on the International Space Station (ISS)

SPACE ENVIRONMENT EFFECTS |External Contamination |Plasma |IR |Acoustics | Mission Success • Safety • Reliability

August 20, 2018

Alexandra M. Deal^a, Katie L. Fox^a, Alvin Y. Huang^a, Michael J. Heiser^a, William A. Hartman^a, Ronald R. Mikatarian^a, Matthew J. Davis^a

Adam Naids^b, Timothy A. Bond^b, Brien Johnson^b

Dino J. Rossetti^c

^aThe Boeing Company ^bNASA Johnson Space Center ^cConceptual Analytics, NASA Goddard Space Flight Center

Background

- The United States External Active Thermal Control System (EATCS) on the International Space Station (ISS) uses liquid ammonia in closed loops to collect, transport, and reject heat.
- Detection and location of small ammonia leaks (estimated to be < 50 lbm per day) from the EATCS was identified as a risk by the ISS program and the Robotic External Leak Locator (RELL) was commissioned to demonstrate the capability to locate these small leaks.

Robotic External Leak Locator

Residual Gas Analyzer (RGA) Probe

- Collaboration between NASA's Goddard Space Flight Center and Johnson Space Center
- Maneuvered with Space Station Remote Manipulator System (SSRMS) and Special Purpose Dexterous Manipulator (SPDM) robotic arms
- > PKR 251 Ion Gauge: Combination total pressure gauge
 - Pirani gauge
 - Cold cathode system
- Residual Gas Analyzer 100
 - Quadrupole gas analyzer that measures for a mass range from 1 to 100 ion mass-to-charge ratios
 - Heated filament bombards incoming gas with electron creating positive ions.
 - The ions are directed toward the quadrupole filter where they are separated by their mass-to-charge ratio.
 - A Faraday Cup detector measures current directly and for increased sensitivity, an electron multiplier measures the electron current proportional to ion current.

Boeing Space Environments Team

RELL Measurement of Water and Ammonia

- Use ion mass ratios of 16 to 17, in additional to total pressure, to distinguish between water and ammonia
 - Water: 0.04
 - Ammonia: 0.80

RELL Scanning of RBVMs

- Six Radiator Beam Valve Modules (RBVMs) on each side of the ISS
 - Two per radiator panel
- > Etc

Boeing Space Environments Team

PACE ENVIRONMENT EFFE

RBVM Scans – Partial Pressure

SPACE ENVIRONMENT EFFECTS | External Contamination | Playma | IR | Acouttles Mission Success • Safety • Reliability

Boeing Space Environments Team

RBVM Scans – Total Pressure

Boeing Space Environments Team

An additional day of scanning was planned for the end of the onorbit demonstration in December 2016 after reviewing the initial scanning data

- An additional day of scanning was planned for the end of the onorbit demonstration in December 2016 after reviewing the initial scanning data
- Pass over RBVM flex hoses and quick disconnects (QDs)

Focused RBVM 1 Inspection

RELL approved for external operations in February 2017 after observed EATCS leak rate increased.

Zenith (-Z) face

Aft-Port (-X / -Y) face

Aft-Starboard (-X / +Y) face

"Back" face

Boeing Space Environments Team

Focused RBVM 1 Inspection: Zenith (-Z) Face

PACE ENVIRONMENT EFFECT: External Contamination | Planas | IR | Acoutice Mission Success • Safety • Reliability

Zenith (-Z) face

Boeing Space Environments Team

Focused RBVM 1 Inspection: Aft-Starboard (-X / +Y) Face

Boeing Space Environments Team

Focused RBVM 1 Inspection: Aft-Starboard (-X / +Y) Face

Boeing Space Environments Team

-52

0.5

CCO

Focused RBVM 1 Inspection: Aft-Port (-X / -Y) Face

PACE ENVIRONMENT EFFECTS Edited Containation Filium [12: Acoustic Mission Second & Safety + Reliability

Focused RBVM 1 Inspection: Aft-Port (-X / -Y) Face

Boeing Space Environments Team

Focused RBVM 1 Inspection: "Back Side"

4

Conclusions

- RELL was successful in detecting and locating an ammonia leak during the on-orbit demonstration and additional inspection in February 2017.
 - Potential leak site inspected by a crew member during an EVA in March 2017 and HD video showed small flakes originating from the coolant lines.
 - Coolant lines isolated in April 2017 and subsequent monitoring of system pressures showed the leak had stopped.
 - Radiator-side coolant line retrieved by EVA in March 2018 for inspection on the ground.
- Grid scanning technique is effective and repeatable for locating leaks.
 - Total pressure measurements using the ion gauge are useful in building contour maps of pressure.
 - Need to be combined with RGA partial pressure measurement data to determine what is causing the differences in total pressure.

Acknowledgements

- Contributions during the design and verification stages of the Robotic External Leak Locator:
 - Jesse A. Buffington
 - David Autrey
 - Carlos E. Soares
 - Matthew J. Roode
 - Steven B. Morris
 - Michael S. Woronowicz
- Stanford Research Systems for their support during on-orbit operations in November December 2016 and February 2017:
 - Matt Kowit
 - Dave Doheny

Contact Information

- > Alexandra Deal, alexandra.m.deal@gmail.com
- Katie Fox, katie.l.fox@boeing.com

Questions?

Back Up

Boeing Space Environments Team

Background Scanning A: Ram (+X)

Boeing Space Environments Team Publically available – NASA EDAA NF1676 TN59109

Background Scanning A: Ram (+X)

Boeing Space Environments Team

PACE ENVIRONMENT FFFF