
NASA Kennedy Space Center – Internship Final Report

1

Software Engineering Intern
Edgar Hernandez

NASA Kennedy Space Center
Major: Computer Science

 NIFS Fall Session
11/10/2018

NASA Kennedy Space Center – Internship Final Report

2

HYPERS Software Development

Edgar Hernandez1
University of California Santa Cruz, Santa Cruz, California, 95060

Nomenclature
API = Application Program Interface
CLI = Command Line Interface
CM = Crew Module
COTS = Commercial-off-the-shelf
CSV = Comma-Separated Values
GFAST = Ground and Flight Application Software Team
HTML = Hypertext Markup Language
HYPERS = Hypergolics Software
LCC = Launch Control Center
LCS = Launch Control System
KSC = Kennedy Space Center
NASA = National Aeronautics and Space Administration
PDF = Portable Document Format
SLS = Space Launch System
SM = Service Module
VIL = Vehicle Integration and Launch
VM = Virtual Machine
XLS = eXceL Spreadsheet
XML = Extensible Markup Language

I. Introduction

ASA has a long and decorated history of spaceflight innovation and achievements. The next great endeavor is
NASA’s Journey to Mars, which will be achieved with the Space Launch System (SLS) and Orion capsule.
Developing and testing these systems is no easy feat. Commercial-off-the-shelf (COTS) tools do not always

provide enough functionality for engineers to do their job efficiently, making internal custom-made tools is
necessary to meet the expected launch date.

 The purpose of this internship was to provide software support to the Storable Propellants and Hydraulic Systems
Branch, specifically the Hypergolics Software (HYPERS) team. This included developing tools to parse unique
measurements from the vehicle into the format specified by the HYPERS team. Displays were also created per
requirements.

 Another major component of this internship was to create an intuitive interactive offline graphing application. The
current tool for plotting vehicle data does not have all the functionality and features that HYPERS would like. By
inputting a vehicle data file, the application plots the data based on the time range and components the user would like
to view. After the graph is generated, the user is able to zoom in, pan horizontally, add comments, hover over data
points, and take a snapshot of the current state of the graph. These additional features will help engineers quickly
investigate the relationship between vehicle components through data visualization.

II. Objectives

 As SLS and the Orion capsule continue development, it is necessary to create remote Launch Control
System (LCS) displays for subsystem development and Vehicle Integration and Launch (VIL) operations. Thankfully,
the creation of these displays can be automated with an internal NASA tool. The caveat to this method is that the input
file for this tool consists of unique identifiers in a particular scheme that is not readily available without excess amounts
of tedious work. This is a frustrating limitation that can affect many phases of operations. These databases do provide

N

NASA Kennedy Space Center – Internship Final Report

3

other exporting formats such as Extensible Markup Language (XML) and Portable Document Format (PDF) files.
Extracting the necessary unique identifiers can also be automated using a modified version of the XML to Comma-
Separated Values (CSV) file converter I created during my summer internship.

Data visualization is vital to understanding how components affect and interact with each other. One example of

this is investigations after a vehicle mishap. Vehicle components generate large amounts of data. A single component
recording data at a rate of 100 samples per second records 6,000 data points in one minute, 360,000 data points in one
hour, 8,640,000 data points in one day, and 25,920,000 data points in three days. To effectively understand the story
behind data, it is necessary to only view the essential components and time range. Additionally, investigating data
becomes much easier when many features are supported. Required features for this graphing application include:

• Dynamic plotting of datasets on different y-axis, adapting to data type and number of components
• Zooming into a specific time range and have all plots zoom in as well
• Commenting on data points
• Providing printer friendly snapshots of current state of the graph
• Ability to hove the mouse over a data point and display the y-value at that x-value

o More importantly, having the option to hover over a data point and display all y-values at that
x-value

III. Approach

A. Preparation

Since I created this application from scratch, there was quite a bit of preparation. After understanding the

requirements, my mentor and I researched different technologies to pick the right tools. First, we needed a way to
parse vehicle data directly downloaded from NASA databases. Pandas is a Python library that is optimized for data
handling and analysis. It provides special data structures and efficient operations for manipulating the data structures.

As for the actual graphing of data, there are many graphing libraries that each have their benefits and limitations.
Listed below are some of the most popular graphing libraries we researched and their pros and cons:

Gnuplot:
Pros:

• Incredibly simple and easy to use
• Great for creating lots of quick graphs

Cons:
• Appearance is difficult to customize
• Limited interactive abilities

Matplotlib:
Pros:

• Fast and painless installation
• Many online documents and resources

Cons:
• Difficult to create interactive plots

Plotly:
Pros:

• Highly customizable and highly interactive
• Beautiful representation of data
• Active online developer community

Cons:
• Browser based
• Much higher learning curve than Gnuplot and Matplotlib

Considering all this, the Plotly Application Program Interface (API) open source library was chosen since it is

possible to create highly interactive graphs that can fulfil the requirements for the desired features.

NASA Kennedy Space Center – Internship Final Report

4

As for HYPERS Software Support, my preparation was fairly minimal because of previous experience received

during my summer internship. For display creation, I already had access to the tools needed to create those displays
and had already created plenty of displays in the summer. I had also created a data parsing tool in the summer that
converted XML database files to CSV files which helped tremendously when doing similar tasks in the fall.

B. HYPERS Software Support

NASA has an in-house tool for automating the remote LCS display generation process. This takes input files

formatted as unique identifier names line by line. The database that contains the identifier names and additional
information does not have a readily available solution for providing a file in such a format, but can export XML and
PDF file formats for requirement data which contain the identifiers for which we would like to create displays. By
modifying an XML-to-CSV tool I created during the summer, we gained the ability to, given an XML file, produce a
file that contains identifier names line by line. Although this was possible, many of the reports contained fewer than
5 identifiers, so in some cases it made more sense to simply copy and paste identifier names. This parsing tool is still
important for operations because situations arise in which data must be extracted from long reports in specific formats
that must be generated manually.

 Additionally, other LCS displays were created manually using a display editor on a Unix-based Virtual Machine
(VM). These displays were created manually, since the tool allows users to create displays with high fidelity compared
to the automated display tool. Manually creating displays is usually reserved for important displays that provide an
overview of the system and links to other subsystems displays.

C. Interactive Offline Graphing Application

The tool is launched by executing a Python script. The Command Line Interface (CLI) waits for the user to enter

an Excel Spreadsheet (XLS) file name containing the vehicle data. The purpose of the script is to clean the data in the
XLS file and transfer this to a text file which will be easier for the code to process. This data cleaning involves deleting
blank rows, blank columns and eliminating unnecessary whitespaces all performed by the application’s library. This
cleaned version of the data is saved into a new text file and a Hypertext Markup Language (HTML) file is opened in
the user’s browser. The user then selects the new text file and the software begins storing the text file’s data.

Now that the data is modified such that it is much easier to collect, all the time data points are recorded and all

vehicle component data points are recorded into appropriate arrays. After this, a base layout is generated for the graph.
Finally, the subplots and vehicle component data are entered into the graph. This outputs an interactive graph in the
browser.

In order to fulfil the requirements, I implemented two custom Plotly buttons, ‘Toggle all hover info’ and

‘Download image’. When ‘Toggle all hover info’ is ON, hover information is shown for all y-values corresponding
to the cursors position. When the ‘Download image’ button is pressed, a printer friendly version of the graph is
downloaded. This include a white background and all text is converted to black.

Figure 1 is an example graph. At the top right is the toolbar, from left to right ‘Toggle all hover info’, ‘Download
plot’, ‘Pan’, ‘Zoom’, ‘Zoom in’, ‘Zoom out’, ‘Autoscale’, ‘Reset Axis’, ‘Show closest data on hover’, and ‘Compare
hover data’. ‘Toggle all hover info’ is demonstrated in Figure 1 on the right side and shows all hover info for time
09/15/2018-183233.295. The grey boxes are comments which can be edited, deleted, or moved. If ‘Toggle all hover
info’ is ON and a comment is added, that comment is added to all y values at that x value as demonstrated in the
middle of the graph.

NASA Kennedy Space Center – Internship Final Report

5

Figure 1. An example graph

D. Future Work

The interactive offline graphing application is currently still under development and screens preceding the graph

need work. The design plan is to start with a file upload screen were you either drag-and-drop or select the input
vehicle data file. After this, the times and component names are processed. The next screen would show a timeline
and checkboxes next to every component name. The user would be able to select which components to graph and what
time range they would like to see. These steps are necessary because Plotly’s responsiveness decreases with an
increase in data. So if the user only cares about 3 components in the last day of data, then the user can select these
settings and Plotly will be able to provide a much smoother user experience.

IV. Conclusion

The interactive offline graphing application will provide a new method for exploring vehicle data. This will have

a number of different uses for the HYPERS team; they will be able to easily create clear representations of data
generated through many of their operations. The tool will hopefully enable the team to more efficiently investigate
data whenever necessary.

LCS displays are necessary for remotely monitoring Orion’s Crew Module (CM) and Service Module (SM). These

displays will need to be continuously modified as requirements might change as well as unique identifier
nomenclature. Hopefully, the work I did for the XML to CSV converter will make operations more efficient and allow
the engineers to better allocate their time.

This software engineering opportunity has been a once in a lifetime experience. I’m extremely grateful to have

been able to leverage my Computer Science fundamentals and apply them to real problems here at the Kennedy Space
Center. This internship has also given me the opportunity to explore open source technologies. Plotly is an open source
library with a lot of support from an active developer community. Using this library in the Offline Interactive Graphing
Application project led me to becoming familiar with reading open source code and building upon that. This is an
essential skill to have as many programming projects build on the great work of others!

NASA Kennedy Space Center – Internship Final Report

6

Acknowledgments

I would like to thank my mentor Joey Parkerson for his guidance and help throughout the internship as well as my
supervisor Pablo Aguayo. I would like to thank the HYPER/Ground and Flight Application Software Team (GFAST)
for all the help along the way! I’d also like to give a final thank you to the KSC Education Office for this wonderful
opportunity.

	HYPERS Software Development
	Nomenclature
	I. Introduction
	II. Objectives
	III. Approach
	A. Preparation
	B. HYPERS Software Support
	C. Interactive Offline Graphing Application
	D. Future Work

	IV. Conclusion
	Acknowledgments

