

NASA Observations and Modeling during ICE-POP

<u>Walt Petersen</u> NASA GPM Deputy Project Scientist, GV NASA Marshall Space Flight Center

David Wolff NASA GPM GV Systems Manager NASA Goddard Space Flight Center

> <u>V.Chandrasekar</u>, CSU <u>J. Roberts</u>, MSFC, <u>J. Case</u>, MSFC/ENSCO

KMA ICE-POP Meeting **27-30 November 2018**

Programmatic Focus

- NASA Weather Program, Short Term Prediction and Operational Research Transition Center (SPoRT)
- NASA's Global Precipitation Measurement (GPM) Mission Ground Validation and Precipitation Measurement Mission Programs

NASA Multi-Center Team in ICE-POP

• MSFC, GSFC, WFF (+CSU)

Overarching Objective:

 Leverage international collaboration and synergistic observational (GPM- MSFC/WFF/CSU), numerical modeling (MSFC-SPoRT/GSFC), and research transition (MSFC-SPoRT) opportunity to verify, test utility, improve satellite products and numerical prediction models in heavy orographic snow regime Provide real-time observational and NWP data in support of ICE-POP, participate in significant international science effort.

GPM Ground Validation and NASA Weather Program:

- Direct/physical validation of active/passive satellite-based snowfall retrieval algorithms over coastline and mountains; melting layer interaction with terrain
- Physics of snow, coupling to snow water equivalent rate and satellite remote sensor retrieval algorithm assumptions
 - Size distributions, types/habit, water equivalent, profiles
- NUWRF Model + Observational analyses: Movement toward "level IV products" leverage intensive and multi-faceted NWP component.
- Model precipitation processes (liquid, mixed phase and frozen); Build model testing database for further active/passive remote sensing algorithm development (e.g., satellite data simulators)
- "Integrated" validation of products in operational context

NASA Instruments in ICE-POP: D3R, PIP, Pluvio, MRR

Dual Frequency Dual Polarimetric **D**oppler Radar (D3R)

NASA

Precipitation Imaging Package (PIP) x 2 (imager/disdrometer)

Pluvio₂ x 3

NASA

Longitude[°E]

Disdrometer and Pluvio Network: NASA-Processed

• Processing for rain and snow, Nov 17 - April 18

PARSIVEL Network (11/2017-04/2018) 3 NASA (GWU(APU09), BKC (APU13), MHS(APU14)) 7 NIMS (JPO, DRO, CPO, YPO, ODO, BW0, SJO) 1 KNU (MHS) 1 CCU (PCO) 8 UCLM (MOO, DGW, SCW, YYO, YDO, JMO, OGO, DHW)

PLUVIO 400/200 Network (11/2017-04/2018) 3 NASA (GWU, BKC, MHS) 1 KNU (YPO)

Event rain comparisons for EOP

NASA

Prior to 2/12/2018 (Slip ring problem)

Scan	Azimuth	Elevation	Scan	Samples	Azimuthal	Site	Time taken
	(degrees)	(degrees)	Rate		Resolution	Name	for scan
			(deg/sec)		(degrees)		(seconds)
RHI	51.31	0 to 90	3	128	0.192	GWU-1	30
RHI	231.54	0 to 90	3	128	0.192	MHS	30
PPI	0 to 359	4	14	128	0.896		25.72
PPI	0 to 359	5	14	128	0.896		25.72
PPI	0 to 359	6	14	128	0.896		25.72
PPI	0 to 359	7	14	128	0.896		25.72
PPI	0 to 359	8	14	128	0.896		25.72
RHI	330	0 to 90	3	128	0.192	HBM*	30
Birdbath	0 to 359	90	8	128	0.512		45
							Total: 263.6

2/12/2018 to 3/12 (then down)

Scan	Azimuth	Elevation	Scan	Samples	Azimuthal	Site	Time taken
	(degrees)	(degrees)	Rate		Resolution	Name	for scan
			(deg/sec)		(degrees)		(seconds)
RHI	51.4	0 to 90	3	128	0.192	GWU- 1	30
RHI	231.4	0 to 90	3	128	0.192	MHS	30
RHI	330.5	0 to 90	3	128	0.192	HBM*	30
PPI	0 to 359	5	14	128	0.896		25.7
							Total: 115.7**

28 February Heavy Snow Event

NESDIS SFR Algorithm (MHS; NOAA 19) Snowfall rates consistent with KMA radar and PIP (4-6 mm/hr)- but south. (GFS- issue!)

PIP 0556 UTC: Large Aggregates (largest ~2.5 mm)

Data note: 13 dB Ka-Correction applied due to snow on radome

<u>NASA Unified-WRF</u> (NU-WRF) Model Features:

- 4x daily 24-hour forecasts
- Initialized
 00/06/12/18z
- 30 minute output
- 62 vertical levels
- PBL: MYJ; LSM: Noah
- <u>SW/LW Radiation</u>: NASA/GSFC schemes within NU-WRF
- Microphysics: NASA/GSFC 4-ice graupel+hail
- <u>Cumulus</u>: Grell-Freitas (9km only)
- ICs/BCs: NCEP/EMC GFS
- <u>SSTs</u>: 2-km NASA SPoRT MODIS+VIIRS product

Model grids uploaded to KMA in real-time during experiment

Example: Three Significant Snowstorms between Olympics (Feb) and Paralympics (Mar)

Twenty four-hour simulated snow accumulation [in cm] from the NU-WRF 1-km grid for snowstorm events on (a) 28 February, (b) 4 March, and (c) 7-8 March 2018.

Early ICE-POP: NU-WRF, GPM, and ICE-POP Observations

January 17, 2018

Precipitation <u>Amount</u> (24-hr estimate)

Forecast, GPM IMERG, and ICE-POP observations agree on precipitation type and amount for an early ICE-POP snow event near PyeongChang.

These comparisons will continue as ICE-POP progresses

How do IMERG and NUWRF Perform Relative to Surface Obs (GV) for Estimating/Predicting Daily Snow Water Accumulation?

Baseline NUWRF 24-hour forecast accumulation does as well or better than IMERG*. *Caveat*- Model had more false alarms; IMERG more misses

ICE-POP: Real-time Ocean Turbulent Heat Fluxes

Organization

ep. 14, 2017 - 03:00 UTC

Objectives: n. 14, 2017 - 03000 LITE. Leverage GPM microwave imagers to lect a resolutio com3 ‡ generate real-time ocean turbulent heat flux dataset (T/Q/Wind); subsequent global archive. And Shop Data Assimilation testing for ICE-POP NWP Areas in the rate This Produc Latent Heat Flux wind Speed Specific Humidit 45 N 30 N Feb 15,2018 15 N

- Global, 25km archive generated for the GPM-Era (Feb. 2014 Mar. 2018)
 - Swath level (L2) surface meteorology
 - GMI, AMSR-2, SSMIS (F16, F17, F18, F19)
 - Hourly, gridded (L3) meteorology and turbulent heat fluxes
- Data are/were made available through web server and visualizations in real-time

Objectives: Assimilate surface temperature, moisture, and wind speed products retrieved from GPM L1C data; Assess impacts on snow storm events observed during ICE-POP.
Approach: WRF model with 9 km + 3 km resolution and 62 vertical levels; Community GSI v3.6.
Cases: TEST 15-17 February 2018 Japan (currently completed 2 DA cycles, working on 6 more DA cycles available at later times); 27-28 February 2018, 4-5 March 2018 .
Impact: Preliminary result indicates an increment of ~2° C in low level temperature and 1-2 g/kg

in moisture field. Impact on precipitation forecast is also found.

<u>Data</u>

œ

- Dataset(s) successfully collected and generally are quite robust (D3R mechanical issue, occasional Pluvio capping/hysteresis etc.)
- Many GPM overpasses of domain during IOP (primarily passive microwave, limited DPR)
- Observational inventory (QC) uploaded, satellite products (available via NASA DAACcan make subsets for ICE-POP), surface parameters (LH/SH fluxes), high resolution SST, NUWRF FDP model products also uploaded.
 - Some issues with instrumentation noted (D3R, Pluvios)
 - Action: need to ensure data repository is complete, inventoried/documented properly, final QC versions.

<u>Science:</u>

- Direct/physical validation of satellite-based snowfall retrievals over complex terrain underway
- Preliminary looks at snow physics, cloud model ice processes
- Preliminary data assimilation testing underway
- Limited presentations at AMS Wea. Fcstg., ERAD, PMM Science Team etc.