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Assimilate SMAP L2 retrievals of soil moisture (9km Enhanced) into 

the Noah LSM within the Land Information System

•Data assimilation via Ensemble Kalman Filter

•Baseline is existing SPoRT LIS run in CONUS and East Africa

•Builds on experience assimilating SMOS

•Assess impact of SMAP on soil moisture

Initialize NWP Forecasts with SPoRT LIS and SMAP LIS

•Investigate impact of SMAP DA on NWP forecasts

•Case studies and statistical verification

Overview of Project



 Framework for running LSMs incorporating a wide variety of 
meteorological forcing data and land surface parameters
 Developed by NASA-GSFC
 Includes data assimilation capability.
 Can be run coupled with Advanced Research WRF.

 Using Noah 3.3 Land Surface Model (LSM) within LIS
 SPoRT maintains near-real-time and experimental LIS runs

 SE US (3-km), shared with WFO’s
 East Africa, shared with Kenya Meteorological Service (KMS)

Land Information System (LIS)

SPoRT-LIS total column soil 
moisture displayed in AWIPS II

East Africa LIS domain

References: 
Kumar et al. (2006)
Peters-Lidard et al. (2007)



Updates

• New Validation Datasets (COSMIC, OK and WTx mesonets)

• Experimented with bias corrections and perturbations

• Tested additional LSM layer

• Started NWP runs for CONUS 

• Implemented Alaska domain for fire threat assessment



Algorithm Refinement

Modeling/DA settings examined

• Depth of first layer

• Number of ensemble members

• Magnitude of ensemble perturbations

• Autocorrelation length of perturbations

• Data version 

• Bias Correction



SMAP Retrievals 3Z 10 Jun 2015
Version 1                                                                                                      Version 2

Version 2 of Level 2 Enhanced SMAP Retrievals
Removes/Reduces Striping on Coastlines



• Soil moisture discontinuities can occur 

in regions where different precipitation 

inputs are blended
• NLDAS-2 uses radar-derived 

precipitation over U.S. and reanalysis 

outside of U.S. 

• Results in anomalous dry conditions in 

southern Ontario (upper left, oval)

• SMAP retrieved soil moisture (lower left) 

does not have this feature.

• Through assimilation of SMAP L2 soil 

moisture fields, this anomaly disappears 

over time (upper right) to provide a more 

representative soil moisture field 

• This should help forecasters better 

assess current regional conditions and 

provide more accurate initialization of 

NWP models.

Better Blending of Soil Moisture Across US-Canada Border
0-2 m Column Integrated Relative Soil Moisture (%)

12Z 4 Jun 2016
Baseline SPoRT LIS                            SPoRT LIS with SMAP DA

SMAP Retrieved Soil Moisture
0-5 cm, volumetric (m3/m3 x100)

Non-localized CDF-matching 
bias correction applied

LIS Difference
(SMAP DA Minus Baseline SPoRT)

Column Integrated RSM (%)
Credit:  Youlong Xia, Pingping Xie (NCEP/EMC); David Mocko (NASA/GSFC)



• SMAP assimilation improves timing 
and shape of forecast squall line

• Quantitative validation planned over 
2 warm seasons in CONUS

• East Africa domain experiments to 
follow

• Future work can investigate impact 
of CYGNSS, NISAR, etc.

Impact of SMAP Assimilation in LIS for 
Numerical Weather Prediction

• Running LIS without and with SMAP 
soil moisture assimilation

• Use LIS output to initialize WRF 48-h 
forecast (NU-WRF)

• Validate forecast reflectivity against 
radar observations

Radar Mosaic for Validation

SPoRT LIS LIS with SMAP DA



Verification Plan for SMAP 
DA NWP Impact Simulations

CONUS and East Africa Control- and SMAPENHDA-initialized NU-WRF 
model runs



• Coupled LIS/WRF runs within NASA 
Unified WRF (NU-WRF)
• NWP provides forcing for LSM
• LSM provides fluxes and surface 

conditions to NWP model

• Assess impact of SMAP DA on NWP 
for  coupled runs
• Verify NWP forecasts against surface 

obs, soundings, and precipitation 
analyses

• Examine impact on significant events
• Evaluate in CONUS and East Africa

WRF impact tests (Planned)



CONUS NU-WRF Simulation Verification

 Point Forecast Verification (T, Td, winds)
• Data source: NCEP Meteorological Assimilation Data Ingest System (MADIS) 

surface, upper-air, and cooperative mesonet observations

• Run through NCAR/NCEP Model Evaluation Tools (MET) using SPoRT-MET python 
scripting package
 Interpolate NU-WRF 9-km/3-km model grid forecast data to point locations

Generate statistics on model grids and mask by 14 NCEP/EMC verification regions

Gridded Precipitation Verification (1, 3, 6, 12, 24h accumulation intervals)
• Data source: Multi-Radar Multi-Sensor (MRMS) radar+gauge-corrected

hourly precipitation analyses

• Run through MET using SPoRT-MET scripting package
Upscale MRMS precipitation to 9-km and 3-km model grids

Generate statistics by grid point, and in neighborhood windows of  9km and  27km

Neighborhood verification determines how accurately the model can predict accumulated 
precipitation thresholds within a certain distance of a point



East Africa NU-WRF Simulation Verification

 Point Forecast Verification (T, Td, winds)
• Data source: Global Data Assimilation System (GDAS) PREPBUFR files containing 

surface and upper-air observations

• Run through NCAR/NCEP Model Evaluation Tools (MET) using SPoRT-MET python 
scripting package
 Interpolate NU-WRF 9-km/3-km model grid forecast data to point locations

Generate statistics on model grids and mask by country

Gridded Precipitation Verification (1, 3, 6, 12, 24h accumulation intervals)
• Data source: GPM/IMERG-Final half-hourly precipitation rates, converted to hourly 

accumulations, sub-set over East Africa region, and output in GRIB2 format

• Run through MET using SPoRT-MET scripting package
Upscale model accumulated precipitation grids to IMERG 0.1-deg subset grid

Generate statistics by grid point, and in neighborhood windows of  0.1-deg and  0.3-deg

Neighborhood verification determines how accurately the model can predict accumulated 
precipitation thresholds within a certain distance of a point



NCEP/EMC 14 Verification Regions over CONUS



• April 2015-October 2016 (two warm seasons)
• Initialized from existing SPoRT LIS run (many years spinup)

• One-month ensemble perturbations to start data assimilation ensembles

• Validation April-October 2015/2016 for SCAN/USCRN sites

• Compare model run assimilating SMAP L2 Enhanced Retrievals to control run (No DA)

• Also intercompare bias correction methods

• Experiments

• SPoRT-LIS (control)

• DA with No Bias Correction

• Soil-type Bias Correction

• Standard (point by point CDF matching)

• Radius-limited (300 km) soil type correction

• Validation is vs. in situ stations, which have representativeness error and 
possible bias due to depth of measurement

Summary of Experiments



Surface Layer Anomaly Correlation by Region
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Surface Layer Bias by Region
2

0
1

6
   

   
   

 
2

0
1

5



Surface Layer ubRMSE by Region
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Overall Summary Error Statistics: Correlation

• Generally negative impact from DA
• Need to adjust perturbations to reduce gain (weighting of observations)?
• Radius-limited soil type bias correction (RADBC) performs best among DA methods.



Overall Summary Error Statistics: Bias

• Correction is to the model climatology rather than the in situ observations, explaining why the “No BC” run 
can have lower bias.

• Further experiments show reduced bias when the top soil layer is split in two (0-2.5, 2.5-10 cm).



Overall Summary Error Statistics: RMSE/ubRMSE

• Generally small changes from DA.
• Radius-limited soil-type correction (RADBC) best DA run for ubRMSE of surface layer.



East Africa Verification Regions

Domain 1 (9 km) Nested domain 2 (3 km) And masked by country



Alaska soil moisture modeling

• Collaboration with Michigan Tech (Laura 
Bourgeau-Chavez)

• Other potential partners interested in fire 
risk (BLM, U of Alaska, NPS)

• Modeled SM shows correlation with in situ 
measurements

• Organic soil type characteristic of upper 
layers in northern latitudes not well 
represented in soil-type database used in 
model.

• In situ measurements show up to 80% VWC 
while model stops at ~50%



Site Map



In situ observations vs LIS soil moisture

Control model
Tussock Shrub 1: r = 0.668

Tussock Shrub 3: r = 0.747

Tussock 1: r = 0.709

Sedge 1: r = 0.584

With SMAP data assimilated 
Tussock Shrub 1: r = 0.474

Tussock Shrub 3: r = 0.514

Tussock 1: r = 0.410

Sedge 1: r = 0.462



Other details

• Soil moisture loggers were deployed by MTRI in Alaska in July of 2017
• Measurements taken every hour
• Powered by solar panels
• Loggers taking measurements at depths of 6 cm, 10 cm, and 18 cm
• Raw logger data was calibrated based on the soil profile identified during 

deployment
• Daily logger values were calculated by averaging together any data within 3 

hours of 6am (the SMAP descending flyover time)

• Data comparisons only use data from 10 cm probe between July 1 
and October 31 in years 2017 and 2018

• MTRI work funded by NASA SMAP grant #NNX16AN09G



Questions and Comments?
clay.blankenship@nasa.gov

http://weather.msfc.nasa.gov/sport/

Facebook: NASA.SPoRT

Twitter: @NASA_SPoRT
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