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SPoRT is a NASA project to transition unique observations and research capabilities to the operational weather community to improve short-
term forecasts on a regional scale.




Overview of Project

Assimilate SMAP L2 retrievals of soil moisture (9km Enhanced) into
the Noah LSM within the Land Information System
Data assimilation via Ensemble Kalman Filter
*Baseline is existing SPoRT LIS run in CONUS and East Africa
*Builds on experience assimilating SMOS
*Assess impact of SMAP on soll moisture

Initialize NWP Forecasts with SPoORT LIS and SMAP LIS
Investigate impact of SMAP DA on NWP forecasts
«Case studies and statistical verification
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Land Information System (LIS)
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* Framework for running LSMs incorporating a wide variety of
meteorological forcing data and land surface parameters :
= Developed by NASA-GSFC
* |ncludes data assimilation capability.
= Can be run coupled with Advanced Research WRF.
= Using Noah 3.3 Land Surface Model (LSM) within LIS
=  SPoRT maintains near-real-time and experimental LIS runs
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Updates

* New Validation Datasets (COSMIC, OK and WTx mesonets)
* Experimented with bias corrections and perturbations

» Tested additional LSM layer

 Started NWP runs for CONUS

* Implemented Alaska domain for fire threat assessment
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Algorithm Refinement

Modeling/DA settings examined

e Depth of first layer

* Number of ensemble members

* Magnitude of ensemble perturbations
* Autocorrelation length of perturbations
* Data version

* Bias Correction
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Version 2 of Level 2 Enhanced SMAP Retrievals
Removes/Reduces Striping on Coastlines

SMAP Retrievals 3Z 10 Jun 2015
Version 1 Version 2
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Better Blending of Soil Moisture Across US-Canada Border

* Soil moisture discontinuities can occur 0-2 m Column Integrated Relative Soil Moisture (%)
in regions where different precipitation 1224 Jun 2016
Baseline SPoRT LIS SPoRT LIS with SMAP DA

Inputs are blended

 NLDAS-2 uses radar-derived
precipitation over U.S. and reanalysis
outside of U.S.

« Results in anomalous dry conditions in
southern Ontario (upper left, oval)

« SMAP retrieved soil moisture (lower left)
does not have this feature.

* Through assimilation of SMAP L2 soil
moisture fields, this anomaly disappears.s |
over time (upper right) to provide a more,_ |
representative soil moisture field

» This should help forecasters better
assess current regional conditions and
provide more accurate initialization of
NWP models.
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SMAP Retrieved Soil Moisture LIS Difference
0-5 cm, volumetric (m*/m*x100) ~ (SMAP DA Minus Baseline SPoRT)
Non-localized CDF-matching Column Integrated RSM (%)

Credit: Youlong Xia, Pingping Xie (NCEP/EMC); David Mocko (NASA/GSFC) bias correction applied
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Impact of SMAP Assimilation in LIS for

Numerical Weather Prediction * SMAP assimilation improves timing

and shape of forecast squall line

* Quantitative validation planned over
2 warm seasons in CONUS

e East Africa domain experiments to
follow

e Future work can investigate impact
of CYGNSS, NISAR, etc.

* Running LIS without and with SMAP
soil moisture assimilation

e Use LIS output to initialize WRF 48-h
forecast (NU-WRF)

» Validate forecast reflectivity against

radar observations : 4 N
Radar Mosaic for, Validation

MEXRAD 1KM MOSATC 13 JUL 16 23




Verification Plan for SMAP
DA NWP Impact Simulations

CONUS and East Africa Control- and SMAPENHDA-initialized NU-WRF
model runs
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WRF impact tests (Planned)

LIS/WRF Coupling

Noah LSM in LIS

LIS Output WRF Output
Fluxes for LIS Forcing

WRF NWP Model

GFS Atmospheric
Boundary
Conditions

* Coupled LIS/WRF runs within NASA
Unified WRF (NU-WRF)
* NWP provides forcing for LSM

* LSM provides fluxes and surface
conditions to NWP model

* Assess impact of SMAP DA on NWP
for coupled runs

 Verify NWP forecasts against surface
obs, soundings, and precipitation
analyses

* Examine impact on significant events
 Evaluate in CONUS and East Africa

Validation Datasets

Domain

T, q, wind

Precipitation

CONUS

MADIS

MRMS

East Africa

WMO network

GPM IMERG




CONUS NU-WRF Simulation Verification

" Point Forecast Verification (T, Td, winds)

e Data source: NCEP Meteorological Assimilation Data Ingest System (MADIS)
surface, upper-air, and cooperative mesonet observations

e Run through NCAR/NCEP Model Evaluation Tools (MET) using SPORT-MET python
scripting package
v’ Interpolate NU-WRF 9-km/3-km model grid forecast data to point locations
v Generate statistics on model grids and mask by 14 NCEP/EMC verification regions

» Gridded Precipitation Verification (1, 3, 6, 12, 24h accumulation intervals)

e Data source: Multi-Radar Multi-Sensor (MRMS) radar+gauge-corrected
hourly precipitation analyses

* Run through MET using SPoRT-MET scripting package
v’ Upscale MRMS precipitation to 9-km and 3-km model grids
v’ Generate statistics by grid point, and in neighborhood windows of + 9km and + 27km

v'Neighborhood verification determines how accurately the model can predict accumulated
precipitation thresholds within a certain distance of a point



East Africa NU-WRF Simulation Verification

" Point Forecast Verification (T, Td, winds)

* Data source: Global Data Assimilation System (GDAS) PREPBUEFR files containing
surface and upper-air observations

e Run through NCAR/NCEP Model Evaluation Tools (MET) using SPORT-MET python
scripting package
v’ Interpolate NU-WRF 9-km/3-km model grid forecast data to point locations
v’ Generate statistics on model grids and mask by country

» Gridded Precipitation Verification (1, 3, 6, 12, 24h accumulation intervals)

» Data source: GPM/IMERG-Final half-hourly precipitation rates, converted to hourly
accumulations, sub-set over East Africa region, and output in GRIB2 format

* Run through MET using SPoRT-MET scripting package
v’ Upscale model accumulated precipitation grids to IMERG 0.1-deg subset grid
v’ Generate statistics by grid point, and in neighborhood windows of + 0.1-deg and + 0.3-deg

v'Neighborhood verification determines how accurately the model can predict accumulated
precipitation thresholds within a certain distance of a point



NCEP/EMC 14 Verification Regions over CONUS
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Summary of Experiments

e April 2015-October 2016 (two warm seasons)
* Initialized from existing SPoRT LIS run (many years spinup)
* One-month ensemble perturbations to start data assimilation ensembles

* Validation April-October 2015/2016 for SCAN/USCRN sites
 Compare model run assimilating SMAP L2 Enhanced Retrievals to control run (No DA)
e Also intercompare bias correction methods

* Experiments
e SPORT-LIS (control)
* DA with No Bias Correction
* Soil-type Bias Correction
e Standard (point by point CDF matching)
e Radius-limited (300 km) soil type correction

e Validation is vs. in situ stations, which have representativeness error and

possible bias due to depth of measurement
SPART




2015

2016

Surface Layer Anomaly Correlation by Region
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2015

2016

Surface Layer ubRMSE by Region
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Overall Summary Error Statistics: Correlation
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2015 Overall Stats: Correlation

B SPORTLIS m NOBC STDBC MW SMAPENHDA ERADBC

RawcCorr-Surface RawCorr-Root AnomcCorr-Surface AnomCorr-Root

2016 Overall Stats: Correlation
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* Generally negative impact from DA
Need to adjust perturbations to reduce gain (weighting of observations)?
Radius-limited soil type bias correction (RADBC) performs best among DA methods.




Overall Summary Error Statistics: Bias
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* Correction is to the model climatology rather than the in situ observations, explaining why the “No BC” run
can have lower bias.
* Further experiments show reduced bias when the top soil layer is split in two (0-2.5, 2.5-10 cm).




Overall Summary Error Statistics: RMSE/ubRMSE
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2015 Overall Stats: RMSE/ubRMSE
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2016 Overall Stats: RMSE/ubRMSE
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* Generally small changes from DA.
Radius-limited soil-type correction (RADBC) best DA run for ubRMSE of surface layer.




East Africa Verification Regions

Domain 1 (9 km) Nested domain 2 (3 km) And masked by country
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Alaska soil moisture modeling

 Collaboration with Michigan Tech (Laura ol e o e d
Bourgeau-Chavez) :

* Other potential partners interested in fire AL o
risk (BLM, U of Alaska, NPS)

* Modeled SM shows correlation with in situ = =
measurements :

* Organic soiIthe characteristic ofuloper R s e
layers in northern latitudes not wel

represented in soil-type database used in
model.

* |n situ measurements show up to 80% VWC
while model stops at ~50%

SP@RT
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Site Map

Tussock 1

Tussock
Shrub 3

Tussock 2

Floodplain 1

Tussock
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Tussock 3

© Loggers Installed
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N situ observations vs LIS soil moisture

Control model
Tussock Shrub 1: r = 0.668
Tussock Shrub 3:r = 0.747
Tussock 1: r = 0.709
Sedge 1: r=0.584
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With SMAP data assimilated

Tussock Shrub 1: r = 0.474
Tussock Shrub 3: r=0.514
Tussock 1: r = 0.410
Sedge 1: r =0.462
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Other details

* Soil moisture loggers were deployed by MTRI in Alaska in July of 2017
* Measurements taken every hour
* Powered by solar panels
* Loggers taking measurements at depths of 6 cm, 10 cm, and 18 cm

* Raw logger data was calibrated based on the soil profile identified during
deployment

* Daily logger values were calculated by averaging together any data within 3
hours of 6am (the SMAP descending flyover time)

e Data comparisons only use data from 10 cm probe between July 1
and October 31 in years 2017 and 2018

* MTRI work funded by NASA SMAP grant #NNX16AN09G
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Questions and Comments?

clay.blankenship@nasa.gov
http://weather.msfc.nasa.gov/sport/
Facebook: NASA.SPoRT
Twitter: @NASA _SPoRT
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