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 25 

ABSTRACT 26 

Human immune response is compromised and bacteria can become more antibiotic resistant in 27 

space microgravity (MG). We report that under low-shear modeled microgravity (LSMMG) 28 

stationary-phase uropathogenic Escherichia coli (UPEC) become more resistant to gentamicin 29 

(Gm). UPEC causes urinary tract infections (UTIs), reported to afflict astronauts; Gm is a 30 

standard treatment, so these findings could impact astronaut health. Because LSMMG has been 31 

shown to differ from MG, we report here preparations to examine UPEC’s Gm sensitivity during 32 

spaceflight using the E. coli Anti-Microbial Satellite (EcAMSat) on a free-flying “nanosatellite” 33 

in low Earth orbit. Within EcAMSat’s payload, a 48-microwell fluidic card contains and supports 34 

study of bacterial cultures at constant temperature; optical absorbance changes in cell 35 

suspensions are made at three wavelengths for each microwell and a fluid-delivery system 36 

provides growth medium and predefined Gm concentrations. Performance characterization is 37 

reported for spaceflight prototypes of this payload system. Using conventional microtiter plates, 38 

we show that Alamar Blue (AB) absorbance changes due to cellular metabolism accurately 39 

reflect E. coli viability changes: measuring AB absorbance onboard EcAMSat will enable 40 

telemetry of spaceflight data to Earth. Laboratory results using payload prototypes are consistent 41 

with wellplate and flask findings of differential sensitivity of UPEC and its ¨rpoS strain to Gm. 42 

Space MG studies using EcAMSat should clarify inconsistencies from previous space 43 

experiments on bacterial antibiotic sensitivity. Further, if σs
 plays the same role in space MG as 44 

in LSMMG and Earth gravity, EcAMSat results would facilitate utilizing our previously-45 

developed terrestrial UTI countermeasures in astronauts. 46 

 47 
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 53 

INTRODUCTION 54 

When Escherichia coli experiences stationary phase under Earth gravity, it induces the 55 

general stress response (GSR), which makes it comprehensively resistant against a variety of 56 

disinfectants.
1-4

 GSR is controlled by the master regulator of this response, sigma S (σs
, encoded 57 

by the rpoS gene). This sigma factor controls the synthesis of a core set of proteins that protect 58 

vital cell biomolecules, i.e., proteins, DNA, and the cell envelope.
3,4

  59 

Like disinfectants, antibiotics cause cytotoxicity by damaging the biomolecules that the 60 

σs
-controlled proteins protect.  We therefore recently tested the effect of the loss of this sigma 61 

factor on the sensitivity of stationary-phase uropathogenic E. coli (UPEC) to the antibiotic, 62 

gentamicin (Gm): the σs
-deficient strain did indeed show enhanced sensitivity to the drug  63 

relative to the unmodified strain.
5 

64 

E. coli cultivated under what is often referred to as low-shear modeled microgravity 65 

(LSMMG), generated by the use of high-aspect-ratio vessels (HARVs), also develop a σs
-66 

dependent comprehensive resistance, which resembles GSR.
6
  We note that the conditions in 67 
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HARVs are more precisely described as ‘low-shear cell suspension’, a term indicative of the 68 

absence of gravitational cell sedimentation due to the flow of medium past the cells at low 69 

interfacial shear rates. We will, however, continue to use the term LSMMG, which has been 70 

widely adopted to describe such experiments. LSMMG-grown E. coli become more resistant to 71 

high salt, low pH, and ethanol
5-7

 and, as we show here for UPEC, also to Gm.  72 

UPEC is a causative agent of urinary tract infection (UTI), for which Gm is standard 73 

treatment. UTI has been reported in astronauts.
8
 Therefore, if the LSMMG findings are 74 

applicable to actual microgravity of space (MG), they would indicate a potential threat to space 75 

travelers, especially since there is growing evidence that the human immune response is 76 

weakened by MG.
9-11

 However, LSMMG may not have full fidelity to space MG, and it is thus 77 

necessary to examine Gm sensitivity of UPEC in in-situ space experiments.  78 

Biological experiments on the Space Shuttle and the International Space Station (ISS) can 79 

be limited and costly because of crewmember involvement and other factors. NASA has 80 

therefore developed fully autonomous microsystems in the form of free flying “nanosatellites” 81 

for space experimentation. Examples are: GeneSat, PharmaSat, and O/OREOS.
12-15

 These 82 

platforms avoid astronaut involvement and permit experimentation in more orbital locations than 83 

ISS. PharmaSat has been used to measure the effects of low-Earth-orbit microgravity (< 10
-3

 x 84 

Earth gravity) on the sensitivity of the yeast Saccharomyces cerevisiae to the antifungal agent 85 

voriconazole.
13,14

  We have modified PharmaSat for experiments with bacteria in order to 86 

determine E. coli sensitivity in space to Gm. The modified payload system (referred to as 87 

EcAMSat, short for E. coli Antimicrobial Satellite) and tests of its suitability for space 88 

experiments are described here. 89 

Given the findings of Wang et al.
5
 under Earth gravity of the involvement of σs

 in Gm 90 
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resistance, we have included in these studies the ¨rpoS mutant of UPEC, missing σs
.  Should it 91 

turn out that the enhanced resistance of UPEC to Gm in MG also depends on this sigma factor, it 92 

would indicate new ways of controlling UPEC resistance to Gm during space flight.  93 

We have focused on stationary-phase bacteria in this and our previous studies
4,5,16

 for the 94 

following reasons: a) bacteria in this phase are hard to eradicate; b) due, for example, to lack of 95 

nutrient or the presence of oxidative stress, this late-growth phase is often experienced by 96 

bacteria in the human host;
1-3,17

 and c) stationary-phase bacteria express virulence traits required 97 

for disease causation;
18-24

 an example is UPEC Type I fimbriae, which it uses in bladder 98 

colonization.
25, 26

 99 

MATERIALS AND METHODS 100 

LSMMG effect on Gm sensitivity. To determine the effects of cultivation under 101 

LSMMG on Gm sensitivity, the wild type and the ¨rpoS UPEC strains were cultivated in HARV 102 

reactors as described previously.
6
  Pairs of the reactors were rotated about appropriate axes: 103 

vertical for normal gravity (‘HARV NG’) and horizontal for LSMMG conditions.  50 mL of 104 

Luria broth (LB) medium was used in each vessel.  Overnight conventional-flask LB cultures 105 

were used as inoculum; the starting absorbance at 660 nm (A660) was 0.1, and the HARVs were 106 

rotated at 25 revolutions per minute. Following 24-h incubation (37 °C), the stationary-phase 107 

cells were harvested from the HARVs, re-suspended in M9 salts (referred to from hereon as 108 

‘M9’) to an A660 of 0.4, and mixed with sufficient Gm to give a final concentration of 16 µg/mL. 109 

After 24-h incubation (37 °C) under static conditions, viability was determined by counting 110 

colony-forming units (CFU) using LB plates.  111 

Determination of the suitability of Alamar Blue to assess Gm effect on UPEC 112 

viability. To test the effect of space MG in inflight experiments, a method for UPEC viability 113 
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assessment is needed, the results of which can be transmitted from space to Earth via telemetry. 114 

The dye Alamar Blue (AB) was used as a reporter for this purpose in the PharmaSat mission 115 

concerning yeast viability mentioned above.
14

 The yeast cell metabolic activity resulted in AB 116 

reduction, causing its color to change from dark blue to magenta, thus increasing absorption at 117 

525 and decreasing it at 615 nm; from this conversion the relative change in cell viability could 118 

be assessed.
12

 Concomitant measurement at 470 nm, where absorbance is weak for both reduced 119 

and oxidized forms of AB, indicated solution turbidity and thus cell population. 120 

Measured absorbance at 615, 525, and 470 nm only approximates the respective amounts 121 

of oxidized AB, reduced AB, and cell-related turbidity. To more accurately determine these 122 

parameters, we measured complete visible absorbance spectra of oxidized AB, reduced AB, and 123 

a suspension of E. coli. We then used the absorbance values at the three measurement 124 

wavelengths to calculate “cross terms” that correct for the fact that the absorbance spectrum of 125 

(blue) oxidized AB has a shoulder at 525 nm and a tail at 470 nm, that the spectrum of (magenta) 126 

reduced AB also has a tail at 470 nm, and that light scattering by the bacteria occurs throughout 127 

the visible range, varying with a weak linear wavelength dependence. All graphics and results 128 

reported below for quantities of oxidized AB, reduced AB, and cell turbidity have been corrected 129 

accordingly.       130 

To determine if the AB-conversion method can be used for assessing UPEC viability, the 131 

wild type and its isogenic ¨rpoS mutant
5
 were grown in conventional laboratory flasks shaken 132 

overnight at 200 rpm in 1/6-strength LB at 37 °C. As before,
16

 growth under these conditions 133 

was complete within 6 hours, allowing some 8 hours of starvation in stationary phase; this 134 

starvation period permits activation of GSR in the wild type.
27

 The cultures were then diluted to 135 

an A600 of 0.45 in M9. Gm (Sigma-Aldrich, St. Louis, MO) was added to both the wild type and 136 
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the mutant cultures to a final concentration of 16 µg/mL; a parallel aliquot of cell suspension of 137 

each strain without the drug served as control.  Following 24-h incubation without shaking, 1.8 138 

mL of the cultures were transferred to test tubes to which 200 µL of 10x AB (ThermoFisher 139 

Scientific, Grand Island, NY) was added.  To monitor changes in AB absorption, the cultures 140 

were dispensed in microtiter plate wells (Figure 3B; Thermo Scientific, Waltham, MA), each 141 

well receiving 0.25 mL. Appropriate control solutions in other rows of the well plates were also 142 

in 0.25 mL quantities, and five wells were used for each condition.  Absorption changes at 470, 143 

525, and 615 nm were measured in a microplate reader (Biochrom US, Holliston, MA); data 144 

were acquired by DigiRead software (ASYS Hitech, Holliston, MA) and transferred to Excel 145 

(Microsoft, Redmond, WA) for analysis.  146 

EcAMSat payload system.  In this system, the E. coli cells are placed in the payload 147 

hardware in a 48-well fluidic card (Figure 1; Micronics, Redmond, WA). The cards are made 148 

from laser-cut layers of poly(methylmethacrylate) bonded together with pressure-sensitive 149 

acrylic adhesive (9471LE on 51-µm-thick Melinex 455 polyester carrier, 3M; St. Paul, MN). 150 

Each well (4.0 mm diameter x 7.8 mm long; 100 µL volume) is fitted at its inlet and outlet with 151 

0.2-µm filters (nylon fiber; Sterlitech, Kent, WA) to prevent cell leakage.  Well tops and bottoms 152 

are sealed by 50-µm-thick air-and-CO2-permeable optical-quality poly(styrene) membranes.  153 

Attached to both sides of the card are thermal spreaders (thin aluminum plates), each containing 154 

three embedded AD590 temperature sensors that provide output current directly proportional to 155 

absolute temperature (Analog Devices, Norwood, MA); a thin-film heater fabricated from kapton 156 

tape and patterned metal conductors (Minco, Minneapolis, MN) is affixed to the opposite side of 157 

each spreader plate, relative to the fluidic card, and controlled in a closed-loop fashion using the 158 

temperature sensor outputs.  Each well is equipped with its own 3-color LED (LTST-159 



 8

C17FB1WT; Lite-On Technology Corp., Taiwan); a photodetector (Model no. TSL237T; AMS-160 

TAOS USA, Plano, TX) at the opposite end of each well converts the transmitted light intensity 161 

to a proportional frequency, from which absorbance values can be calculated. (No moving parts 162 

are associated with the optical measurements.) The card, thermal spreaders, and printed-circuit 163 

(PC) boards supporting the LEDs and photodetectors, which are placed on opposite sides of the 164 

fluidic card, constitute the “card stack” (see the cross section, upper right in Figure 1).  165 

The card fluid-delivery system (Figure 1) includes 11 electrically-actuated solenoid 166 

valves (SVs, LHDA0531315HA; The Lee Co., Westbrook, CT); a diaphragm pump for high-167 

flow-rate fluid mixing, circulation, and priming of tubing (NF 5S; KNF Neuberger, Trenton, NJ); 168 

a precision metering pump (LPVX0502600BC; The Lee Co.) to prepare and deliver the desired 169 

concentrations and volumes of antibiotic and other reagents; three 35-mL and six 25-mL reagent 170 

bags (fluorinated ethylene propylene, FEP; American Fluoroseal/Saint-Gobain, Gaithersburg, 171 

MD); a bubble trap (custom fabricated by NASA Ames); and a check valve (Smart Products; 172 

Morgan Hill, CA) to prevent waste fluids from flowing back into the system.  The 48 wells are 173 

configured in 4 fluidically independent rows or “banks” of 12 each (labeled “High”, “Medium”, 174 

“Low”, and “Control” in Figure 1, indicating the relative Gm concentrations that were 175 

administered).  Each bank on the inlet side of the card is connected to the normally-closed port of 176 

one SV and, on the outlet side, to a 25-mL waste bag partially filled with M9 salts (without 177 

glucose; Sigma-Aldrich, St. Louis, MO; referred to from hereon as ‘M9’); pressurization (~7 178 

kPa) of these waste bags by means of a spring-loaded metal plate replaces any fluid that 179 

evaporates over time from the wells through their permeable membrane cover.  The nutrient 180 

(1/6-strength LB), antibiotic (Gm), antibiotic dilution medium (M9), and AB bags are also 181 

attached to SV NC ports (Figure 1).  A Gm-dilution loop is created by attaching the M9 bag via 182 
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another SV near the outlet of the bubble trap, which is placed ahead of the point of fluid delivery 183 

to the card.  The main waste bag collects the previous contents of the tubing each time it is filled 184 

with a new reagent (see below) prior to delivery to the card. 185 

Figures 2A and 2B show, respectively, the assembled EcAMSat payload fluidic system 186 

hardware and the hermetically sealed containment vessel (internal volume ~ 1.2 L) in which the 187 

system is housed.  The sealed payload containment vessel is integrated with the spacecraft “bus”, 188 

which includes the power, communications, data-handling, and control functions. The completed 189 

nanosatellite has overall dimensions of 10 x 22 x 36 cm.  190 

AB-mediated assessment of Gm effect in the EcAMSat payload on Earth.  The wild 191 

type and ¨rpoS mutant of UPEC were grown as described above, rinsed with M9 (3x), and 192 

diluted in M9 to an A600 of 1.0.  In a sterile biosafety cabinet, 5 µL aliquots of each strain were 193 

loaded in alternating wells of the 48-well fluidic card so that six of the 12 wells per bank 194 

contained the wild type and six the mutant.  The card was sealed and purged with CO2 to 195 

facilitate bubble-free filling of the channels and wells: any CO2 bubbles remaining after priming 196 

with degassed M9 dissolved readily as additional M9 flowed through the wells.  The card was 197 

manually primed with a syringe containing degassed M9 connected to the outlet, and a second 198 

empty syringe at the inlet, its plunger drawn back to generate a slight vacuum.  After filling and 199 

until connection to the fluidic system, the card remained under pressure (~4.4 kPa) from a bag of 200 

M9 hanging approximately 45 cm above the card; this served to replace any fluid lost by 201 

evaporation through the permeable membranes and thereby prevented bubble formation in the 202 

wells.  The rest of the sterile fluidic system was filled with the appropriate solutions (see Figure 203 

1), assembled with the rest of the payload hardware, and then sealed in the hermetic containment 204 

vessel; as explained above, slightly pressurized M9 in the waste bags continued to compensate 205 
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for any evaporation.  As placement in the containment vessel eliminated further need for a sterile 206 

environment, the assembled payload system was removed from the biosafety cabinet and 207 

attached to a benchtop “rotisserie” apparatus; this rotated the payload first clockwise and then 208 

counterclockwise by nearly one full rotation with a period of ~ 80 s, preventing cell settling.  The 209 

experiments were run using ground-support equipment, i.e., a desktop computer and power 210 

supply, and employed a “space-flight-like” command sequence.  211 

To start the viability measurements, the 3-color LEDs with emissions at the above-212 

mentioned wavelengths were sequentially energized, one color and one well at a time. The 213 

photodetector of each well converted the transmitted light intensity of each color to a 214 

proportional frequency, permitting calculation of absorbance. (During the spaceflight 215 

experiments, the stored frequencies will be telemetrically transferred to Earth from the satellite.) 216 

The measurements for each well were taken every 15 min.  The payload system was warmed to 217 

37 °C for ~3 hours (Figure 2C) by the heaters and thermal spreaders with closed-loop 218 

temperature control using the mean value from the six temperature sensors.  1/6-strength LB was 219 

pumped into each bank in turn, starting with the control bank, replacing the M9.  The pumping 220 

phase lasted for two hours per bank (see Results section for total durations of the various 221 

phases).  The cells were allowed to grow to stationary phase and then to starve.  Next, the 222 

metering pump delivered M9 to the control bank; each well received ~ 4x its 100 µL volume to 223 

reach at least 90% exchange.  The metering pump then extracted a small, measured amount of 224 

concentrated Gm from the antibiotic bag and delivered it to the M9 dilution bag (Figure 1); the 225 

Gm-dilution loop was opened and the diaphragm pump operated to mix the antibiotic and M9.  226 

After delivery of the resultant lowest concentration of Gm to the Low bank (~4x exchange), the 227 

process was repeated to deliver the medium and high Gm concentrations to the Medium and 228 
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High banks, respectively. Following incubation with Gm, AB was added, displacing the M9 in 229 

the Control bank and the Gm in the other banks. 230 

Determination of ‘stasis’ effect. An approximately six-week delay is expected between 231 

loading of cells and reagents into the satellite hardware and initiation of the experiments in 232 

space.  To determine the effect of such stasis on cell viability, Gm strength, and AB properties, 233 

the cells were incubated without shaking in M9 for 10 weeks and the reagents were stored for 234 

this duration in the same types of bags that will be used for the space mission.  Cell viability was 235 

determined by cell count; the Gm and AB activities were assessed by comparing the effect of 236 

aged reagents with fresh ones in cell killing and assessing cell activity, respectively.  237 

 238 

RESULTS 239 

LSMMG cultivation makes UPEC more resistant to Gm but not its ¨rpoS mutant.  240 

We examined the effect of LSMMG cultivation on Gm sensitivity of UPEC: cells were 241 

cultivated in HARV reactors to stationary phase and then exposed to Gm for 24 h.  LSMMG-242 

grown UPEC was significantly more resistant to Gm than the control culture grown under 243 

HARV NG conditions (29 ± 2% vs. 18.6 ± 1.2% survival, p < 0.01).  This is reminiscent of the 244 

well-established effect of LSMMG on enhanced resistance of E. coli to disinfectant agents.
6,8

 245 

Consistent with results with cells grown under NG in conventional flasks,
5
 the ¨rpoS mutant was 246 

more sensitive to the drug than the wild type also under the HARV NG conditions (2.33 ± 0.09% 247 

vs. 18.6 ± 1.2% survival, p < 0.01).  Furthermore, as in the case of disinfectant agents, the 248 

mutant, unlike the wild type, failed to show increased Gm resistance under LSMMG; indeed, 249 
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under these conditions, it was more sensitive than its HARV NG-grown counterpart (0.21 ± 250 

0.07% vs 2.33 ± 0.09% survival, p < 0.001).   251 

Thus, LSMMG stress makes E. coli comprehensively resistant, including to an important 252 

drug, and this effect is σs
-dependent. LSMMG may not fully represent space MG conditions, but 253 

given its relevance to these conditions, this finding constitutes a potential threat to astronaut 254 

health. This warrants corroboration under actual space MG to determine if countermeasures must 255 

be devised to safeguard astronaut health. Towards this end, the following experiments were 256 

carried out using the EcAMSat payload platform described in Materials and Methods.  257 

Alamar Blue absorption changes permit determination of UPEC viability.  As stated 258 

above (Materials and Methods), we tested AB as reporter for assessing cell viability to transmit 259 

results of the planned space experiments to Earth. For these experiments, our previous 260 

experimental protocol was used.
5
 This entailed the following phases: growth, followed by 261 

starvation (needed to activate GSR), Gm treatment, and viability determination by CFU counts; 262 

in the present case, we substituted AB absorbance changes for the colony counting.  The growth 263 

and starvation phases lasted 12 hours each, Gm treatment, 24 hours, and AB assessment of 264 

viability, 6 hours.   265 

The results of the CFU counts of our previous work are reproduced in Figure 3A for 266 

convenience of reference;
5
 they show that, compared to the wild type, Gm treatment causes a 267 

greater loss of viability in the UPEC strain missing the rpoS gene.  Figure 3B shows the color 268 

changes of Alamar Blue in 96-well plates due to the metabolism of the treated and untreated wild 269 

type and ¨rpoS mutant strains (the rows of wells are aligned to the bars of Figure 3A 270 

representing the colony counts): it is clear that the AB absorption changes correlate well with the 271 

CFU counts.  272 
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Using a conventional well-plate reader, absorbance at 470, 525, and 615 nm was 273 

measured and used as described above to calculate the relative concentrations of the oxidized and 274 

reduced forms of AB and the optical density (turbidity) at the indicated time points. Figures 3C-F 275 

show these results when AB was used to assess the effect of Gm on the viability of the two 276 

strains; the controls (M9 alone and M9 + AB; data not shown in the figure) showed no change in 277 

absorbance.  As indicated by lack of change in cell turbidity (black and grey curves; Figures 3C, 278 

D), no growth occurred during these experiments under any of the conditions.  Pairwise 279 

comparisons, for the two strains, of the loss of blue AB or appearance of magenta AB with and 280 

without Gm (Figures 3C and 3D, respectively) yield p < 0.0001 in all four cases.  281 

The concentrations of the blue (oxidized) form of AB for each strain and each condition 282 

are plotted vs. time in Figure 3E, which shows clearly that the amount of AB reduced by both 283 

strains when treated with Gm is less than for the respective untreated controls.  Figure 3F 284 

compares the relative magnitude of the effect of the antibiotic on the wild type and mutant using 285 

the t = 6 hour results from Figure 3E.  The heights of the bars are the percentages of AB reduced 286 

in the presence of Gm divided by the amount of AB reduced in the absence of Gm, for each 287 

strain. The results show that the Gm-treated wild type, which reduced 74.4 ± 2.2% of the amount 288 

of AB reduced by untreated wild type, differs significantly from Gm-treated mutant, which 289 

reduced 60.5 ± 3.2% of the amount of AB reduced by untreated mutant (p < 0.001).  Thus, in 290 

both strains changes in AB absorption resulting from metabolic activity agree qualitatively with 291 

the Gm effect found by CFU measurements. 292 

The EcAMSat system permits efficient dilution and exchange.  It is of course essential 293 

that the dilutions and exchanges needed to conduct the experiments in the EcAMSat hardware be 294 

accurately accomplished.  Antibiotic is carried in the payload in a concentrated form (400 295 
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µg/mL) and will require dilution to the planned three specific concentrations at the time of the 296 

space experiment. To determine antibiotic dilution accuracy, a 1% solution of non-toxic yellow 297 

dye (absorbance maximum ~ 414 nm) in M9 was loaded into the antibiotic bag in place of Gm 298 

(see Figure 2).  The payload was assembled but not loaded into the hermetic containment vessel 299 

so that the system was in near-flight-like configuration but with the tubing accessible during 300 

pumping.  Samples were obtained during pumping of the dye. The absorbance of each sample, 301 

diluted using the EcAMSat payload system, was measured at 414 nm, and the equivalent Gm 302 

dose was calculated using a standard curve.  The accuracy of this dilution process was measured 303 

for three different “builds” of the fluidic system (i.e., different fluidic cards, sets of tubing, 304 

pumps, valves, etc.). Figure 4A shows measured dilutions using dye that correspond to Gm doses 305 

of 3.5, 14.6, and 52 µg/mL, corresponding to a systematic error of 9 – 16% below the intended 306 

concentrations; the coefficients of variance are 4 – 5% for the medium at high concentrations and 307 

20% for the low; the latter is not unexpected due to its high dilution ratio.  Because of the 308 

reasonably low degree of the deviations from the specified concentrations, and the fact that they 309 

will occur in both the spaceflight and ground control systems, they are not expected to 310 

significantly impact the results. 311 

Fluid exchange in the banks is required to make transitions from initial stasis buffer to the 312 

following phases: feeding-and-starvation; Gm dosing; and finally AB-mediated viability 313 

measurement.  To quantify the extent and consistency of these exchanges, 0.2% blue food dye in 314 

M9 was loaded in the AB bag and pumped into all four banks of the card using the same flow 315 

rate and duration as for the planned exchanges in the actual experiments (~4x volume exchange). 316 

The payload was then disassembled, and the absorbance of the dye at 620 nm was measured in 317 

the wells, using a well-plate reader. To ascertain the extent to which the replacement of M9 by 318 
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the dye was less than 100%, the dye was introduced into the banks under pressure (4.4 kPa) to 319 

saturate the wells with it. The dye-filled bag was hung ~45 cm above the card and 6 mL of the 320 

dye was allowed to flow through each bank (~1.5 mL volume): subsequent measurement 321 

provided absorbance of the wells at 100% exchange. Background absorbance was determined 322 

following flushing the card with M9 (which has zero absorbance at 615 nm). The background 323 

was subtracted from both of the above measurements, and the absorbance of the blue dye 324 

following pumping as a percentage of the absorbance at 100% exchange was calculated. Figure 325 

4B shows that, with some bank-to-bank and test-to-test variability, the exchange efficiency in the 326 

wells overall was near, and often greater, than 90%. 327 

EcAMSat payload exerts additional stress, but can reproduce the rpoS-dependent 328 

UPEC resistance to Gm.  We next determined if the AB method can be used to assess Gm’s 329 

effect on the two UPEC strains in the EcAMSat payload system, using absorbance changes at the 330 

same three wavelengths as the well-plate measurements and converting absorbance as described 331 

above to quantities of oxidized and reduced AB (Figure 5A). The environment provided by this 332 

system for the cells is closed and exposes them to its potentially stressful constituents, such as 333 

poly(methylmethacrylate), the acrylic-based pressure-sensitive adhesive, and poly(styrene); it 334 

was therefore not surprising that cells in this setup grew more slowly: some 20 hours were 335 

required for growth completion (Figure 5B), as opposed to six hours in conventional flasks 336 

(Materials and Methods). Given this relative sluggishness, we extended the starvation, Gm-337 

treatment, and AB-viability phases of the experiments to 30, 45, and 50 hours, respectively (see 338 

Figure 5A).  339 

The reduction of AB by wild type and mutant strains, both untreated and gentamicin-340 

treated (52 µg/mL), is shown in Figures 6A and 6B, respectively. As in the well-plate 341 
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experiments, no change in the cell-related turbidity occurred during the experiment for either 342 

strain, indicating absence of growth (Figure 6A, B: black and gray curves). There was a more 343 

marked difference in the metabolic activity of the untreated wild type and the mutant strains 344 

(Figure 6A) in the payload setup than was seen in the microplate experiments (Figure 3C). Given 345 

that the payload environment is stressful and absence of the rpoS gene broadly weakens UPEC,
4
 346 

this was expected and necessitated, as in the well-plate experiments, normalization of the effect 347 

of Gm on the two strains to take into account this baseline difference.  348 

Figure 6C shows the (un-normalized) relative concentration vs. time of the oxidized form 349 

of AB for both the wild type (black/grey curves) and mutant (green curves) strains for all Gm 350 

doses: control, low (3.5 µg/mL), medium (14.6 µg/mL), and high (52 µg/mL).  As with the well-351 

plate experiment, a meaningful comparison of the relative activity of Gm-treated wild type and 352 

mutant strains required normalization for their respective untreated levels of activity. This was 353 

done as described above (Figure 6D). To enable comparison with the well-plate experiments, we 354 

chose for the results shown in Figure 6D the time point at which the Gm-treated wild type 355 

control had reduced 74% of the AB (t = 11.5 hour: see vertical red line, Figure 6C), analogous to 356 

the final time point of the well-plate experiment, at which 74% of the AB had also been reduced 357 

(t = 6 hour in Figure 3D, E, from which Figure 3F data were obtained). While this comparison 358 

reveals little difference between the effects of Gm on the two strains at the lower doses (Figure 359 

6D), there is a significantly larger effect on the mutant relative to the wild type at the high dose 360 

of Gm (52 µg/mL): wild type, 74.5 ± 0.5% of untreated change; mutant, 64.1 ± 2.2% of untreated 361 

change; p < 0.001.  This result is comparable to the well-plate result, albeit at a higher Gm dose. 362 

The reason why the mutant exhibits differential sensitivity only at higher drug concentration is 363 

not clear and would require further work to disentangle the interaction between the stresses of 364 



 17

the payload system and that exerted by Gm. Nevertheless, it is clear that the system designed 365 

here is capable of answering the basic queries of interest, namely, would space MG increase Gm 366 

resistance of UPEC and would it do so in an rpoS-dependent manner? 367 

Determination of bacterial viability and reagent strength with ‘aging’ during the 368 

stasis period.  For our upcoming EcAMSat spaceflight experiment, there is some uncertainty 369 

concerning the interval of time that will elapse between the loading and integration of all payload 370 

constituents, including the bacteria in stasis, and the start of the experiment onboard the 371 

nanosatellite in a stable Earth orbit: it could exceed six weeks.  Accordingly, we determined the 372 

effect of such a stasis period on bacterial viability and reagent strength; based on experience with 373 

PharmaSat, tests were conducted for a stasis period of ca. 10 weeks.  Consistent with previous 374 

studies,
5
 the ¨rpoS mutant retained less viability compared to the wild type: 0.3 vs. 0.7%. Gm 375 

was found to lose some 50% of its potency. These differences will be compensated for by 376 

appropriately adjusting the loading concentrations. AB and LB did not change their potency 377 

during this period.  378 

 379 

DISCUSSION 380 

Concern about human health during space travel has been of central interest since the 381 

inclusion of humans in space flights.  Chief among these have been issues such as the effects of 382 

microgravity on bone density, muscle strength, and cardiac function; to these, more recently have 383 

been added the potential dangers of greater susceptibility of humans to infectious disease.
28,29

  384 

There is compelling evidence that human immune response is compromised in space 385 

flight.
28

 Thus, after space flight, the oxidative burst capacity of monocytes and neutrophils of 386 
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astronauts is diminished, as are the functions of their natural killer and T cells; cytokine 387 

production patterns are altered, likely accounting for the reactivation of herpesviruses seen in 388 

astronauts; stress hormones are increased; and there is a tendency to shift to the Th2 pattern 389 

(cytokine secretion resembling that of Th2 lymphocytes). Exposure to hypoxia or hyperoxia 390 

within the spacecraft or during spacewalks can further weaken the immune response.
11,30-32

  391 

This danger is compounded by the possibility that bacteria become more virulent in 392 

microgravity. Wilson et al.33
 showed that, following culture on the Space Shuttle, S. 393 

Typhimurium became more virulent in mice. Furthermore, the bulk of evidence, gathered in 394 

LSMMG studies, indicates that bacteria may become more resistant in MG to disinfectant 395 

agents, such as high salt and ethanol
8
 and, as we show here, including an important antibiotic.  396 

Bacterial antibiotic resistance has been examined also in actual MG during space flights, 397 

but the results have been contradictory. Thus, while cultivation onboard Salyut 7 resulted in an 398 

increase in the minimum inhibitory concentration (MIC) of E. coli to colistin and kanamycin,
34

 399 

studies on the Space Station MIR indicated mostly decreased MIC to several antibiotics.
35

 These 400 

pioneering studies indicating at least the possibility of increased bacterial drug resistance in 401 

space require further in-depth examination. It is towards this end that we have developed and 402 

tested the payload system described here. We demonstrate that our microfluidic cards and fluid 403 

delivery systems, along with the capability of AB to indicate E. coli viability, can be effectively 404 

used with space experimentation hardware and protocols. In combination with the advantages 405 

conferred by the use of nanosatellite systems, this platform provides an excellent approach for an 406 

in-depth study of bacterial drug resistance during space flight.   407 

The dependence on σs
 of LSMMG-conferred heightened resistance of UPEC to Gm that 408 

we show here is akin to the role of this sigma factor in this resistance seen under Earth gravity.
5
  409 
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The latter studies identified several proteins of the antioxidant defense of this bacterium that can 410 

be targeted to enhance the efficacy of this drug.  Examples span reactive-oxygen-species (ROS) 411 

quencher proteins (e.g., superoxide dismutase and catalase); and those of the pentose phosphate 412 

pathway that supply the NADPH that the quencher proteins require for their activity (e.g., 413 

glucose-6-phosphate, the phosphogluconate dehydrogenases, and transaldolase A).  We are at 414 

present screening small compound libraries for inhibiting these proteins that could conceivably 415 

be used in synergy with Gm to enhance its efficacy.  If the space experiment corroborates the 416 

LSMMG effect of σs
-dependence of Gm resistance, such inhibitor compounds could prove 417 

valuable in combating UTI in astronauts during space travel. Also, the behavior of the ¨rpoS 418 

mutant in inflight experiments will critically test whether the findings of the LSMMG studies, 419 

namely that E. coli perceives MG as a stress, are accurate. 420 

Like the effect of space MG on drug resistance, other aspects of microbial biology have 421 

been reported to be affected differently by this gravity condition in different studies.  In several 422 

experiments on US Space Shuttle missions, Klaus et al. reported a shorter lag phase and a longer 423 

exponential phase compared to ground controls,
36

 ascribing this effect to the formation of a 424 

‘pseudo-membrane’ in the form of an osmotic solute gradient interfering with nutrient flux to the 425 

cells.  However, it has been reported
37,38

 that spaceflight affected neither the lag nor the 426 

exponential phase in E. coli. Our planned spaceflight experiments promise to shed light on these 427 

questions as well. 428 

429 
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Legends 430 

 431 

Figure 1.  Schematic diagram of EcAMSat fluidic system (at left) connected to EcAMSat 432 

48-well fluidic card (at lower right).  A single fluidic well is also shown in cross section (top 433 

right).  SV = 3-way solenoid valve; green arrows show direction of fluid flow; Waste H, M, L, C 434 

collect the flow-through from the High, Medium, Low, and Control banks of 12 wells each; other 435 

components are as marked.  436 

Figure 2.  A) Fully assembled EcAMSat biological/fluidic/optical/thermal payload 437 

system; B) its hermetic payload containment vessel with electrical interface board; overall size ~ 438 

10 x 10 x 20 cm.  C) Chronological summary of the sequence of operations and measurements 439 

for the ground experiments conducted to date; the spaceflight system will follow the same 440 

timeline.  441 

Figure 3.  A) Counts of colony-forming units for wild type (WT) and ¨rpoS mutant 442 

strains of E. coli without and with gentamicin (“Gm”) treatment at 16 µg/mL (reproduced from 443 

ref. 39 for convenience of references).  B) Color changes of Alamar Blue in 96-well plates due to 444 

metabolism of treated and untreated WT and ¨rpoS mutant; well rows are aligned to 445 

corresponding bars of Panel A; control row (“AB + M9”) shows initial, unchanged blue color of 446 

AB in the absence of cellular metabolism.  C) Time dependence of relative concentrations of 447 

oxidized (blue/turquoise curves) and reduced (pink/magenta curves) forms of AB along with OD 448 

(turbidity; black/grey curves) due to wild type (“WT”) and mutant (“Mut”) cells in absence of 449 

Gm measured with a wellplate reader.  D) Same measurement as in Panel C but in the presence 450 

of 16 µg/mL Gm.  E)  Time dependence of concentration of blue (oxidized) AB for each strain 451 

(WT in black/grey; mutant in green/light green) without and with Gm treatment.  F) Relative 452 

magnitude of the effect of Gm on the two strains based on the t = 6-hour data from Panel E; each 453 
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bar is normalized to the amount of AB reduction measured for the respective strain in absence of 454 

Gm treatment (n = 6; p < 0.0001).  Error bars in Panels C through F are ± one standard deviation.   455 

Figure 4.  A) Expected (calculated) and optically measured (using dye) equivalent doses 456 

of Gm prepared using three separate “builds” of the EcAMSat fluidic system (different fluidic 457 

cards, tubing sets, pumps, and valves) for dye concentrations corresponding to low, medium, and 458 

high Gm levels.  B) Optically measured exchange efficiency of EcAMSat fluidic wells after ~ 459 

400 µL of exchange fluid were pumped through each 100 µL well by the fluidic system for the 460 

four banks of wells depicted in Figure 1; all wells contained stationary-phase E. coli in order to 461 

include their impact on flow resistance through 0.2 µm pore-size filters at the inlet and outlet of 462 

each well (n = 12 per condition per test).  Error bars in both panels are ± one standard deviation. 463 

Figure 5.  A) Time-dependent changes during growth, antibiotic-treatment, and Alamar-464 

Blue-measurement phases of experiment using the EcAMSat optical system, fluidic card, and 465 

fluidic delivery system.  Curves show absorbance of oxidized (blue/turquoise curves) and 466 

reduced (pink/magenta curves) forms of AB along with OD (turbidity; black/grey curves) due to 467 

wild type (“WT”) and mutant (“Mut”) cells.  B) Semi-log plot of OD due to cells (turbidity) from 468 

the growth phase of Panel A for wild type (black) and mutant (green) strains, showing the 469 

different growth phases.  Error bars in both panels are ± one standard deviation. 470 

Figure 6.  A) Time dependence of absorbance due to oxidized (blue/turquoise) and 471 

reduced (pink/magenta) forms of AB along with OD due to cells (turbidity; black/grey) for both 472 

E. coli strains in absence of Gm.  B) As in Panel A, but treated with Gm at 52 µg/mL.  C) 473 

Alamar Blue reduction curves (absorbance vs. time) for Gm = 0, 3.5, 14.6, and 52 µg/mL; 474 

diagonal arrows start at control (Gm = 0), point through low and medium doses, and terminate at 475 

highest dose.  Line at t = 11.5 hour denotes point at which WT control has reduced 77% of 476 
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Alamar Blue, equivalent to the t = 6 hour data point of the conventional well-plate experiment 477 

shown in Figure 3.  D) Amount of Alamar Blue reduced in presence of 3.5, 14.6, and 52 µg/mL 478 

Gm (“Low”, “Medium”, “High”) normalized to the amount of AB reduced for the untreated 479 

control for each strain at t = 11.5 hour of Panel C; p < 0.0001 for the high Gm dose.  Error bars 480 

for Panels A, B, and D are ± one standard deviation.   481 
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