
NASA/TM–2019–220251

Computational Performance of
Progressive Damage Analysis of
Composite Laminates using
Abaqus/Explicit with 16 to 512 CPU
Cores

A.C. Bergan
Langley Research Center, Hampton, Virginia

February 2019

NASA STI Program. . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part
in helping NASA maintain this important
role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI.
The NASA STI Program provides access to
the NASA Aeronautics and Space Database
and its public interface, the NASA Technical
Report Server, thus providing one of the
largest collection of aeronautical and space
science STI in the world. Results are
published in both non-NASA channels and
by NASA in the NASA STI Report Series,
which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and
personal search support, and enabling data
exchange services.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI program home page
at http://www.sti.nasa.gov

• E-mail your question to
help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TM–2019–220251

Computational Performance of
Progressive Damage Analysis of
Composite Laminates using
Abaqus/Explicit with 16 to 512 CPU
Cores

A.C. Bergan
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

February 2019

Acknowledgments

The support provided by Dassault Systèmes Simulia throughout this study is gratefully acknowl-
edged. The author wishes to thank Aharon Mims for executing and processing many preliminary
analyses.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500

Abstract

The computational scaling performance of progressive damage analysis using Abaqus/
Explicit is evaluated and quantified using from 16 to 512 CPU cores. Several anal-
yses were conducted on varying numbers of cores to determine the scalability of the
code on five NASA high performance computing systems. Two finite element models
representative of typical models used for progressive damage analysis of composite
laminates were used. The results indicate a 10 to 15 times speed up scaling from
24 to 512 cores. The run times were modestly reduced with newer generations of
CPU hardware. If the number of degrees of freedom is held constant with respect
to the number of cores, the model size can be increased by a factor of 20, scaling
from 16 to 512 cores, with the same run time. An empirical expression was derived
relating run time, the number of cores, and the number of degrees of freedom. Anal-
ysis cost was examined in terms of software tokens and hardware utilization. Using
additional cores reduces token usage since the computational performance increases
more rapidly than the token requirement with increasing number of cores. The in-
crease in hardware cost with increasing cores was found to be modest. Overall the
results show relatively good scalability of the Abaqus/Explicit code on up to 512
cores.

1

2

1 Introduction

One of the main barriers to applying progressive damage analysis (PDA) methods
to element and component level aerospace structures is computational expense. Im-
provements in predictive capability of PDA for strength and life of composite coupon
scale specimens (e.g., open-hole tension) continue to be reported [1]. However, rel-
atively few attempts have been made to apply the analysis methods demonstrated
at the coupon scale to structural elements and components. One reason is that the
PDA methods require the use of very small elements, typically less than 0.5 mm [2].
Using these element sizes, run-times for coupon simulations are often several hours
or days on desktop workstation machines with between 8 and 24 central process-
ing unit (CPU) cores. Therefore, directly applying the analysis methods to larger
structures appears computationally intractable.

A variety of techniques have been proposed for scaling up PDA methods to the
element and component level. Perhaps the most common approach is to modify the
analysis method to directly reduce the number of degrees of freedom (DoF). Some
authors have proposed techniques that simplify the representation of damage as the
length scale is increased [3, 4]. Others have proposed approaches for concurrently
solving the local damage progression problem within the context of the global struc-
tural analysis such that the coupling between the two scales is maintained, e.g. [5].
An alternative approach is to enhance the parallel performance of the solver. Rec-
ognizing that most commercial finite element analysis (FEA) software has been
slow to embrace parallelization (especially in the case of implicit solvers) and the
rapidly reducing cost of parallel high performance computing (HPC) resources with
thousands of cores, researchers have developed in-house FEA codes specifically for
parallel performance [6–8]. As these research codes demonstrate the benefits of us-
ing HPCs, it is expected that the parallel scaling performance of commercial FEA
solvers will be improved. Recently, the commercial FEA code Abaqus/Explicit has
demonstrated good parallel scaling performance [9]. In the end, the optimal ap-
proach to scaling PDA methods to large structures probably uses both simplifying
techniques to reduce or limit the number of DoF and parallel computing with HPC
resources.

This study aims to quantify the present performance of the Abaqus/Explicit
code on several NASA HPC systems. The study was motivated by the Advanced
Composites Project interest in predicting element and component level structural
response using the NASA Langley Research Center code CompDam [10]. Through
characterizing parallel scaling performance, a simple empirical expression is obtained
relating run time, number of CPU cores, and number of DoF. The results allow ana-
lysts to design models appropriately sized for the available computational resources
and acceptable run times.

This report is organized as follows. First, the computing resources used in the
study are described. Next, the two finite element models used for the evaluation are
summarized. The models were selected to represent a range of complexity in terms
of the damage progression behavior. In the following section, the computational
performance results are described. Then, an empirical estimate for run time is
provided. Finally, the cost of analysis with increasing number of cores is considered.

3

2 Computational Resources

The performance of Abaqus/Explicit was evaluated using several NASA comput-
ing systems. The computing systems were chosen to represent different machine
architectures and several recent generations of hardware. The systems included one
shared-memory server, denoted H, and four distributed-memory systems, denoted
K2, K3S, K3H, and K4. Table 1 summarizes the features of the four systems.

Table 1: NASA compute systems used in this study.

Compute system designation
H K2 K3S K3H K4

Memory Shared Distributed Distributed Distributed Distributed
architecture

Nodes 1 160 262 135 172
CPU model Haswell Westmere Sandybridge Haswell Skylake
CPUs/node 4 2 2 2 2
Cores/CPU 18 6 8 8 20
Total cores 72 1920 4192 2160 6880

Memory/core 32 2 2 4 2.4
(GB)

Interconnect N/A 32 56 56 100
speed (Gbps)
Acquisition 2016 2011 2013-2016 2013-2016 2018

year

System H is a Hewitt-Packard ProLiant DL850 generation 9 and is representative
of a modern system often used for finite element analysis with commercial codes such
as Abaqus, Nastran, and Ansys at NASA Langley Research Center. H is a shared
memory machine with 4 Intel Haswell E7-8890 v3 CPUs with 18 cores operating
2.5 GHz, yielding a total of 72 cores. Since the machine is often used for solving
problems using an implicit solver, a relatively large amount of memory is installed:
2.3 TB for a total of 32 GB/core.

K2 is a Silicon Graphics Altix ICE 8400 distributed memory system acquired in
2011. Each node has 2 Intel X5675 Westmere CPUs with 6 cores each operating at
3.07 GHz. A total of 24 GB of memory is available on each node so that 2 GB of
memory is available per core. In contrast to system H, all of the distributed memory
machines have a relatively small amount of memory per core.

K3S and K3H refer to nearly identical nodes that comprise a Silicon Graphics
Altix ICE X distributed memory machine collectively referred to as K3. Herein,
the nodes are treated separately and all analyses are run on a homogeneous set
of nodes. The K3S nodes utilize 2 Intel E5-2670 Sandybridge CPUs with 8 cores
each, operating at 2.6 GHz and 2 GB of memory per core. The K3H nodes have 2
Intel E5-2640v3 Haswell CPUs with 8 core each, operating at 2.6 GHz and 4 GB of
memory per core.

K4 is the newest distributed memory machine used in this study. K4 is an HP

4

Apollo 6000 distributed memory system acquired in 2018. Each node includes 2
Intel Gold 6148 Skylake CPUs with 20 cores each, operating at 2.4 GHz. The nodes
have 96 GB of memory for 2.4 GB per core. The interconnect speed varies among
the different generations of distributed memory machines, with K4 being the fastest
at 100 Gpbs.

Abaqus/Explicit 2017 build ID 2016 09 27-17.54.59 126836 was used on all sys-
tems. The Intel Fortran v16 compiler was used for the models that require user-
subroutines. While these two pieces of software were kept constant for all runs, other
libraries and software on the systems were patched and updated following normal
organizational procedures during the course of several months over which the runs
were executed. As a result, updates to underlying libraries may have contributed to
scatter in the reported run times.

3 Finite Element Models

Two structural models for progressive damage analysis of composite laminates were
used in this evaluation. The models represent a range of complexity of in terms of
the damage progression. The first model was a mixed-mode bend specimen which
includes the propagation of a delamination at a single interface. The vast majority
of the study was conducted using the mixed-mode bend model. The second model
considered a ±45◦ unnotched laminate using the CompDam [11] user-subroutine.
The output requests used in the models are intended to be typical of what would be
utilized in progressive damage analysis, with field data written for many increments.
Although not quantified separately here, the disk write performance may play a role
in the runtime and scalability.

The two models were selected for this study as representative of typical models
used for progressive damage analysis of composite structures. The computational
scaling performance is generally expected to be problem dependent. The models
include several features that are often required for progressive damage analysis of
composite structures including cohesive elements, a continuum damage mechanics
model implemented as user-defined material model, large displacements, and inter-
acting damage mechanisms. However, several other model features, for example
contact and tie constraints, were not considered. Therefore, while it is expected
that the results generated for these two models are representative of the class of
models, deviations may occur.

The two models are described briefly in this section with an emphasis on the com-
putational aspects relevant to the scalability of the analysis. The section concludes
with a brief review of the domain decomposition method by which the solution is
obtained in parallel.

3.1 Mixed-mode bend (MMB)

The mixed-mode bend (MMB) model represents the standardized fracture test used
in characterization of the mode mix behavior of interlaminar fracture propagation
in unidirectional fiber reinforced polymer matrix composites [12]. A schematic of
the test configuration and the model is shown in Fig. 1. The specimen thickness is

5

Figure 1. Schematics of the mixed-mode bend specimen.

4.5 mm and the initial delamination length is 25.4 mm. The test fixture shown in
Fig. 1a is modeled with multi-point constraints and the specimen is modeled with
3-D solid continuum elements (C3D8). The fracture interface is modeled with a
layer of cohesive element (COH3D8), colored in red in Fig. 1b. The typical element
size was 0.127 mm. The analysis was run using double precision. Material proper-
ties for IM7/8552 carbon/epoxy were used [13]. The model included one step where
prescribed displacements were applied using a smooth step amplitude through a du-
ration of one second. Automatic mass scaling was used with a target time increment
of 5 × 10−7 such that the total analysis required 2 × 106 increments.

The model is parametric so that the specimen geometry and mesh size can be
easily adjusted. Several versions of the model with different widths were analyzed
to vary the total number of DoF. The width, b, was selected as the parameter to
adjust to change the problem size since the structural response and problem size
vary predictably as a function of width. For b = 25.4 mm, the model contains
2.7 × 106 DoF and produced a 41 GB output database.

The typical load vs. displacement response produced by the model is shown in
Fig. 2 along with the analytical solution [14]. Some vibrations are evident in the
post-peak response predicted by the finite element model. The stiffness, strength,
and post-peak response are in good agreement. All analysis runs were checked to
verify the load-displacement response remained in good agreement with the closed-
form analytical solution and thus unaffected by the numerical settings (e.g., number
of cores).

6

Figure 2. Typical mixed-mode bend load vs. displacement response.

3.2 ±45◦ laminate (PM45)

The ±45◦ laminate (PM45) was selected for a more complex damage process with
interaction of multiple damage modes and use of a user-subroutine to assess the
impact of these features on computational scaling performance. The specimen is
modeled after the ASTM in-plane shear characterization test specimen [15] but is
simplified in that it is a reduced size and contains only two plies. An illustration
of the model showing the dimensions and the mesh is shown in Fig. 3. The PM45
model includes two plies, +45◦ and −45◦, each modeled with one layer of 3-D contin-
uum solid elements with reduced integration (C3D8R). The CompDam constitutive
model is used to model matrix cracks in the two plies. CompDam is a model for pro-
gressive damage analysis of laminate composites that is implemented as a VUMAT
for use with Abaqus/Explicit [11]. The mesh is fiber aligned with a typical element
size of 0.2 mm for a total of about 4 × 105 DoF. A minimum spacing between matrix
cracks is enforced using an alternating section definition where matrix cracking is
enabled in every fourth row of elements (shown by the colors in Fig. 3) [16]. In the
interface between the two plies, a layer of cohesive elements (COH3D8) is used to
model delamination. The combination of matrix cracking modeled using CompDam
and delamination modeled using cohesive elements is intended to capture the exper-
imentally observed failure process where matrix cracks are linked by a delamination
which results in two-piece failure.

The PM45 model was run with the same material properties and mass scaling
parameters as the MMB. Parameters used for loading and output requests were
also similar to those used for the MMB. The PM45 model produces a linear load
vs. displacement response with an abrupt drop when two-piece failure is predicted.
Several matrix cracks and extensive delamination are predicted. While a nonlinear
shear stress vs. shear strain response is typically observed in tests using ±45◦

laminates, shear nonlinearity was neglected in the model used in this study.

7

Figure 3. Schematics of the ±45◦ specimen. In (b), white elements have matrix
cracking enabled; green elements are linear elastic.

3.3 Domain decomposition

The basic method by which the solution is obtained in parallel is domain decompo-
sition [9]. Using domain decomposition, the model is divided into a user specified
number of parallel domains. The solution is obtained independently for each do-
main and information is passed to ensure continuity and equilibrium at the domain
boundaries. The domains are divided initially so that each has approximately equiv-
alent computation expense. Two examples of the division of the MMB model into
domains are shown in Fig. 4. Changing the number of domains used in the so-
lution procedure may affect the solution (as discussed in section 5) and the run
time. The effect on run time is due to disparity in computational expense among
the domains, with the most costly domain determining the run time. To address
this effect, a dynamic load balancing feature is available in Abaqus/Explicit where,
when the number of domains is set as a multiple of the number of cores, the solver
periodically re-balances the domains among the cores so that computational expense
for each core is similar. The dynamic load balancing feature was not used in this
investigation. All runs were conducted using one domain per core.

Figure 4. Parallel domains shown with a different color for each parallel domain for
two different decompositions.

8

4 Computational Performance

The performance in terms of absolute run time as a function of the numbers of cores
used in the analysis is described in this section. Results are shown for the MMB
model.

The MMB model was analyzed in a configuration with 2.7 × 106 DoF on all
compute systems, with a varying number of cores, ncores. The ncores used for each
run was selected to prefer using all cores per node whenever possible. The run time,
T , is plotted as a function of number of cores in Fig. 5. One curve is shown for each
of the five compute systems with the exception of K4 for which two curves are shown.
Runs were conducted on K4 using all 40 cores per node (K4 40) and with 20 cores per
node (K4 20) to assess the effect of using fewer cores per node than are available. The
results show generally substantial reductions in run time with increasing numbers
of cores. Performance improvements with each generation of CPU are also evident.
Comparing the results from the shared memory system (H) with the results from
the distributed memory systems, there is no meaningful difference in performance.
Interestingly, the distributed memory system K3H, which uses the same generation
of CPU as the shared memory system H, slightly outperformed the shared memory
system in terms of absolute run time using the same number of cores. A notable
improvement in performance was obtained by using 20 cores per node on K4 as
compared with using all available cores (40) per node. While in most cases, adding
additional cores reduced the run time, in a few cases, the opposite occurred. Overall,
the results suggest that substantial reductions in run time are achievable using the
most recent CPU generation and as many cores as possible.

Improvement in run time performance for the four generations of CPU chips
represented by the distributed memory machines was quantified and is shown in
Fig. 6. Power law fits were used to determine the expected run time for each HPC
system on 64, 128, and 256 cores. The results are plotted as a function of acquisition
year in Fig. 6. The reduction in run time performance per year is 8.5% on average.
While not insignificant, the reduction in run time from newer hardware is relatively
small compared with the speed up from parallelization.

Variability in run time for identical analyses run on the same system was quan-
tified. On K3H, four runs of the MMB model with 2.7 × 106 DoF on 96 cores
produced a standard deviation of 34 minutes and a coefficient of variation of 2.8%.
On K3S, six runs of the MMB model with 1.5 × 105 DoF on 16 cores produced a
standard deviation of 5 minutes and a coefficient of variation of 1.7%.

9

Figure 5. Run times for the MMB on each compute system.

Figure 6. Estimated run times for the MMB as a function of hardware acquisition
year.

10

5 Scalability

The scalability was assessed for the MMB with 2.7 × 106 DoF by using a speed up
factor, S, calculated as

S =
T24
Tncores

(1)

where T24 is the run time using 24 cores and Tncores is the run time using ncores. The
number of cores used in the numerator in eq. (1) is arbitrarily chosen as 24 since
this is a common number of cores used for this class of analysis. The speed up as a
function of the number of cores is shown in Fig. 7 for the MMB results from each
system. The results are shown along side ideal scaling, Sideal

Sideal =
ncores

24
(2)

The results show nearly ideal scaling performance up to about 256 cores for most
systems. Between 256 and 512 cores, the scaling performance deteriorates from the
ideal case showing smaller incremental performance gains. No significant differences
in scaling performance were observed across the different machines. While the scal-
ing performance is less than ideal using large numbers of cores, the trends show ever
increasing speed up, never completely flattening out. The results show that speed
up factors of 10 to 15 times are achievable. From a practical point-of-view, speed up
of 10 to 15 times is significant in terms of allowing many more cases to be analyzed
or making much larger problems tractable.

Figure 7. Speed up factor for the MMB on each compute system with (b) showing
a zoomed-in view of (a).

A similar result was found for the ±45◦ laminate, as shown in Fig. 8. As discussed
in the next paragraph, some differences in the results were observed, especially in

11

the damage progression, after the peak load was reached. Therefore, the run time
was defined as the time required to reach the peak load. The scaling performance
is similar to the MMB, where the trend follows the ideal scaling curve. In gen-
eral, the performance of the three hardware systems is similar with slightly better
performance observed using KS3.

Figure 8. Speed up factor for the PM45 on three compute systems.

Since the cross section and material properties of the ±45◦ laminate are uniform
along the length of the specimen, the stress field is nominally uniform and the
predicted location of damage initiation is sensitive to small perturbations in the
stress field. As the number of cores is changed, the model is decomposed differently,
and hence small differences are introduced into the stress field. As a result, the
model predicts different locations of damage for nominally identical analyses where
the only difference is the number of cores used in the analysis as shown in Fig. 9.
This difference in solution pertains only to the location of the damage and is a direct
consequence of the modeling approach. The damage pattern and structural load vs.
displacement response up to the peak load are very similar in all cases. For example,
the peak loads predicted for the three cases shown in Fig. 9 were within 0.1% of the
average peak load. Nonetheless, analysts must be aware of the possibility that the
domain decomposition procedure used for parallelization may affect the solution.
The effect of domain decomposition on the solution is most significant in cases such
as the one discussed here where bifurcation of the solution path is likely in the
presence of small perturbations in the stress field.

As the number of compute nodes is increased, at some point the computational
expense of passing information between the nodes outweighs the benefits of adding
additional nodes. A useful metric in evaluating this trade-off is the number of
DoF per core, λ. Since the domain decomposition produces domains with different

12

Figure 9. Matrix cracking damage variable showing three different cracking patterns
for three different number of cores.

Figure 10. Speed up as a function of the number of degrees of freedom per core, λ,
for two versions of the MMB model.

13

numbers of DoF, the average DoF per core is reported for λ. The speed up as a
function of λ for two versions of the MMB model is shown in Fig. 10. In Fig. 10a,
the number of cores is increased from 24 up to 512 so that λ is decreased from
1.2 × 105 to 3.5 × 103. The results show no clear indication of eroding performance
as λ is decreased. Also, the results show consistency across the different machines.
A reduced-width version of the MMB with fewer DoF (1.5 × 105) was used to in-
vestigate smaller values of λ. The results for the small MMB, shown in Fig. 10b,
suggest that when λ < 2 × 103 performance gains achieved with additional cores are
minimal. Therefore, good scaling performance can be expected with λ > 2 × 103.

6 Empirical Estimates for Run Time

It is beneficial to be able to estimate the runtime of a model of a given size. Hav-
ing an estimate for run time allows model builders to use the maximum model size
possible with the available compute resources and schedule constraints. Although
analyst experience is useful in estimating run times for small jobs, the extrapo-
lation to large jobs is not straightforward since the run time performance scales
nonlinearly. Therefore, two series of analyses were conducted on K3S in order to de-
termine an empirical expression for run time as a function of λ and ncores. Two sets
of analyses were conducted using the MMB model and 2 × 106 increments, which
is the maximum number of increments that should be used in a double-precision
Abaqus/Explicit analysis. Thus the estimates for run time provided here will be
high in cases were fewer increments are used.

The first set of analyses was conducted on one node (ncores = 16). The model size
was scaled from 5 × 104 DoF to 1.6 × 106 DoF, or, equivalently, 3 × 103 DoF/core to
1 × 105 DoF/core. The run time for an explicit analysis is expected to scale linearly
with the problem size and the results were nearly linear, as shown in Fig. 11. The
run time on 16 cores is approximated with

T16 = 0.55λ (3)

which is included in Fig. 11 to show the agreement with the recorded run times.
The second set of analyses assessed the performance penalty when the model size

and ncores are increased at the same time. In other words, the model size is increased
while λ is held constant. The results for λ = 5 × 103 DoF/core and λ = 1 × 104

DoF/core are shown in Fig. 12. The absissca is the run time normalized to the run
time on one node. If the simulation time scaled perfectly, increasing the number of
cores would always yield T/T16 = 1. The results show that a performance penalty
exists as the model size and number of cores are increased proportionally. The
penalty, less than two for all cases that were considered, is relatively small and
consistent with the results in section 5. The scaling penalty is slightly lower for
λ = 1 × 104 DoF/core. The expression

T

T16
= 0.134ln(ncores) + 0.733 (4)

14

Figure 11. Run time scaling with problem size on one node.

Figure 12. Run time scaling with λ constant.

15

was fit to the results using a least squares fitting procedure. Equation (4) can be
utilized to obtain the performance penalty as the model size increases. For example,
using eq. (4), it can be determined that an analysis with ncores = 512 is 57% slower
than ideal linear scaling would suggest. Combining eq. (3) and eq. (4), an expression
is obtained for run time in terms of λ and ncores

T = 0.55λ(0.134ln(ncores) + 0.733) (5)

Equation (5) can be rearranged to determine the maximum model size possible for
a given ncores and T

DoF =
Tncores

0.55(0.134ln(ncores) + 0.733)
(6)

Estimated model sizes obtained using eq. (6) for several combinations of ncores and
T are provided in Table 2. The data show that model size can be increased by a
factor of 20 when scaling from 16 to 512 cores while maintaining the same run time.
The estimates for ncores = 1024 are extrapolated and are shown to motivate future
investigation into the scalability in this regime.

Table 2: Estimated for model DoF (1 × 106) for combinations of ncores and T .

ncores
T [hr] 16 32 64 128 256 512 1024

8 0.21 0.39 0.72 1.35 2.52 4.75 8.96
24 0.63 1.17 2.16 4.04 7.57 14.24 26.89
48 1.26 2.33 4.33 8.08 15.13 28.48 53.77
72 1.90 3.50 6.49 12.11 22.70 42.71 80.66

7 Analysis costs

Although the computational capability may exist to analyze very large models, the
cost of the analysis limits the model size in practice. The costs for compute time
and the cost for Abaqus tokens are quantified in this section and compared with the
run time performance to elucidate run time vs. cost trade-offs.

Analyses conducted with Abaqus use a token system for licensing where the
number of tokens required for an analysis varies with ncores as

ntokens = INT(5(ncores)
0.422) (7)

Therefore, the license cost, Ca, of a particular analysis is the product of the number
of tokens ntokens and the run time T

Ca = Tntokens (8)

Token usage from the MMB with 2.7 × 106 DoF held constant and varying ncores
are shown in Fig. 13. The token usage decreases when additional cores are used

16

Figure 13. Token usage as a function of (a) ncores and (b) λ.

since the run time scales faster than the token usage. There is a limit around
2 × 103 DoF/core where additional cores do not substantially decrease token usage.
The token usage appears asymptotic with increasing ncores; no local minimum is
observed. In most cases, using additional cores reduces token usage. These results
imply that it is preferable to run multiple analysis in series with all available cores
as opposed to parallel execution with a subset of cores allocated to each analysis.
Faster (newer) computation systems (K4) reduce token usage compared with slower
systems (K2).

The cost for the compute time should also be considered. The compute cost is a
function of both the run time and the operational cost of the hardware. The NASA
Advanced Supercomputing (NAS) standard billing unit (SBU) is used to quantify
the compute cost across different machines. The SBU is a means of normalizing
computing time across different architectures, where a conversion factor f is assigned
to each compute architecture to account for the differences in performance. Using
this framework, the compute cost Cc for a job is calculated as

Cc = nnodesTfrSBU (9)

where rSBU is the cost per SBU. Each year, the NAS assigns the cost for an SBU in
dollars. In FY2018, the cost was $0.16/SBU [17]. The conversion factors f assumed
for the hardware used in this study are summarized in Table 3. Using eq. (9), the
compute cost is shown as function of ncores for the MMB with 2.7 × 106 DoF in
Fig. 14 for the distributed memory systems. The shared memory system is omitted
since no conversion factor was available. The results show that the compute cost
increases only slightly with ncores in all cases. Since the compute cost is a function
of nnodes, there is a relatively significant cost penalty if using half the available cores
per node as in the case of K4 20. Since the compute cost increases while the license
cost decrease with increasing ncores, apparently an optimal ncores can be determined.

17

Table 3: Conversion factors f .

K2 K3S K3H K4

1.0 1.82 1.82 6.36

Figure 14. Compute cost as a function of ncores for the MMB model.

8 Conclusions

The computational scaling performance of Abaqus/Explicit was evaluated by con-
ducting several analysis using varying number of central processing unit (CPU)
cores. By comparing run times across different numbers of cores, hardware, and
models, the computational scaling performance was quantified. Five different high
performance computing (HPC) systems were used and analyses were run using be-
tween 16 and 512 cores. The HPC systems included both shared and distributed
memory architectures. The range of hardware used spans a decade in terms of the
CPU generations which provides a sense for the run time improvements with each
new generation of CPU chip.

Two models were analyzed: the first model was a mixed-mode bend specimen
with a single delamination interface represented by cohesive elements and the second
model was a ±45◦ laminate with interlaminar and intralaminar damage interactions.
In both cases, the models were configured in a fashion typical for progressive damage
analysis of composite laminates. That is to say that the accuracy of the damage
prediction was the first priority in the model setup; no special efforts were made to
improve computation scaling performance. The models were chosen to represent a
range of complexity in progressive damage prediction from a relatively simple case
to a relatively complex case.

The results for run time as a function of the number of CPU cores showed signifi-

18

cant reductions in run time scaling up to 512 cores. Each new generation of hardware
accelerated the run time by about 8.5% per year. Speed up of 10 to 15 times was
typical for the different hardware architectures investigated in this study. Scaling
performance was nearly ideal up to 256 cores. The scaling performance deteriorated
but never fully halted as the number the cores was increased to 512. Although the
computational scaling performance is problem dependent, similar performance was
found for the two models analyzed in this study.

While good computational scaling performance is highly desirable, the cost can-
not be ignored. As the number of cores is increased, at some point the performance
may deteriorate due the expense of passing information outweighing the benefits of
additional cores. This trade-off was studied and good performance is obtained when
the number of degrees of freedom per node is maintained above 2 × 103. Monetary
costs in terms of license and HPC usage were quantified as well. The computational
performance outpaced the requirement for additional licenses as the number of cores
is increased. Therefore, license usage decreases when additional cores are used. The
compute cost was found to increase modestly when additional cores are used.

Through characterizing parallel scaling performance as a function of model size,
a simple empirical expression is obtained relating run time, number of CPU cores,
and number of DoF. The results show that, for a given run time and ratio of degrees
of freedom per core, the model size can be increased by a factor of 20 scaling from 16
to 512 cores. This expressions allow analysts to design models appropriately sized
for the available computational resources and acceptable run times.

19

References

1. Engelstad, S. P. and Clay, S. B., “Comparison of Composite Damage Growth
Tools for Static Behavior of Notched Composite Laminates,” Journal of Com-
posite Materials, Vol. 51, No. 10, 2017, pp. 1493–1524.

2. Leone Jr., F. A., Dávila, C. G., Mabson, G. E., Ramnath, M., and Hyder,
I., “Fracture-Based Mesh Size Requirements for Matrix Cracks in Continuum
Damage Mechanics Models,” 58th AIAA/ASCE/AHS/ASC Structures, Struc-
tural Dynamics, and Materials Conference, Grapevine, TX, Jan. 2017.

3. Bergan, A. C., Dávila, C. G., Leone Jr., F. A., Awerbuch, J., and Tan, T.-
M., “An Analysis Methodology to Predict Damage Propagation in Notched
Composite Fuselage Structures,” SAMPE Baltimore, Baltimore, MD, May 2015.

4. Dávila, C. G., Leone Jr., F. A., Song, K., Ratcliffe, J. G., and Rose, C., “Mate-
rial Characterization for the Analysis of Skin/Stiffener Separation,” American
Society for Composites 32nd Technical Conference, West Lafayette, Indiana,
Oct. 2017.

5. Gigliotti, L. and Pinho, S. T., “Multiple Length/Time-Scale Simulation of Local-
ized Damage in Composite Structures Using a Mesh Superposition Technique,”
Composite Structures, Vol. 121, 2015, pp. 395–405.

6. SIERRA Solid Mechanics Team, “Sierra/SolidMechanics 4.22 User’s Guide,”
Tech. rep., SAND2011-7597, Sandia National Lab, Albuquerque, NM, 2011.

7. Casoni, E., Jérusalem, C., Eguzkitza, B., Lafortune, P., Tjahjanto, D. D., Sáez,
X., Houzeaux, G., and Vázquez, M., “Alya: Computational Solid Mechanics for
Supercomputers,” Archives of Computational Methods in Engineering , Vol. 22,
No. 4, 2015, pp. 557–576.

8. Warner, J. E., Bomarito, G. F., Heber, G., and Hochhalter, J. D., “Scalable
Implementation of Finite Elements by NASA Implicit (ScIFEi),” Tech. rep.,
NASA/TM2016-219180, NASA Langley Research Center, Hampton, VA, 2016.

9. Simulia, Abaqus Analysis User’s Guide. Version 2017 , 2017.

10. Eldred, L. B., “Advanced Composites Project Overview: Advanced Air Vehicles
Program,” TCC Fall 2015 Technical Meeting , Columbia, SC, Sep. 2015.

11. Leone, F., Bergan, A. C., and Dávila, C. G., “CompDam - Deformation Gradient
Decomposition (DGD),” 2018, https://github.com/nasa/CompDam DGD.

12. “ASTM Standard D6671. Test Method for Mixed Mode I-Mode II Interlaminar
Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Com-
posites,” Annual Book of ASTM Standards, ASTM Int., 2006.

13. Wanthal, S., Schaefer, J. D., Justusson, B., Hyder, I., Englestad, S., and Rose,
C., “Verification and Validation Process for Progressive Damage and Failure

20

Analysis Methods in the NASA Advanced Composites Consortium,” American
Society for Composites 32nd Technical Conference, West Lafayette, Indiana,
Oct. 2017.

14. Turon, A., Cammanho, P. P., Costa, J., and Renart, J., “Accurate Simulation
of Delamination Growth Under Mixed-Mode Loading Using Cohesive Elements:
Definition of Interlaminar Strengths and Elastic Stiffness,” Composite Struc-
tures, Vol. 92, No. 3, 2010, pp. 1857–1864.

15. “ASTM Standard D3518. Standard Test Method for In-Plane Shear Response
of Polymer Matrix Composite Materials by Tensile Test of a ±45◦ laminate,”
Annual Book of ASTM Standards, ASTM Int., 2013.

16. Hyder, I., Leone Jr., F. A., Justusson, B., Schaefer, J. D., Bergan, A. C., and
Wanthal, S., “Implementation of a Matrix Crack Spacing Parameter in a Con-
tinuum Damage Mechanics Finite Element Model,” American Society for Com-
posites 33rd Technical Conference, Seattle, Washington, Sep. 2018.

17. Lee, T. and Cohen, J., “High-End Computing Program: Standard Billing
Units,” 2018, https://www.hec.nasa.gov/user/policies/sbus.html.

21

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)
01-02-2019

2. REPORT TYPE

Technical Memorandum
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Computational Performance of Progressive Damage Analysis of Composite
Laminates using Abaqus/Explicit with 16 to 512 CPU Cores

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
826611.04.07.01

6. AUTHOR(S)

Bergan, Andrew C.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L–20998

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM–2019–220251

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 24
Availability: NASA STI Program (757) 864-9658

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT

The computational scaling performance of progressive damage analysis using Abaqus/ Explicit is evaluated and quantified using from 16 to 512
CPU cores. Several analyses were conducted on varying numbers of cores to determine the scalability of the code on five NASA high
performance computing systems. Two finite element models representative of typical models used for progressive damage analysis of
composite laminates were used. The results indicate a 10 to 15 times speed up scaling from 24 to 512 cores. The run times were modestly
reduced with newer generations of CPU hardware. If the number of degrees of freedom is held constant with respect to the number of cores, the
model size can be increased by a factor of 20, scaling from 16 to 512 cores, with the same run time. An empirical expression was derived
relating run time, the number of cores, and the number of degrees of freedom. Analysis cost was examined in terms of software tokens and
hardware utilization. Using additional cores reduces token usage since the computational performance increases more rapidly than the token
requirement with increasing number of cores. The increase in hardware cost with increasing cores was found to be modest. Overall the results
show relatively good scalability of the Abaqus/Explicit code on up to 512 cores.

15. SUBJECT TERMS

Abaqus/Explicit; Computational scaling; Cohesive elements; Continuum damage mechanics

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

26

19a. NAME OF RESPONSIBLE PERSON

STI Information Desk (help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

