Astronomy

Abell 1758
Galaxy Cluster
~3.2 billion ly

A Presentation for-Arrow Head-District Merit Badge Day
Mitzi Adams, Dr. Dennis Gallagḥer, Dr. Michael"Zanetti NASAVMSFC
March 9, 2019

Putting it into Context *Astronomical* Scales

Time, Distance Size

How big is a million, a billion, 13.8 billion ?
Count numbers, consider each number as one second.
Count to one million -- 11.6 days
Count to one billion -- Multiply 11.6 days by $1000=32$ years
Count to 13.8 billion --> 439 years

Optical Telescopes

Reflector Newtonian

Refractor
First Used by Galileo to do Astronomy

Astronomical

Mirrors

Schmidt-Cassegrain
Lenses

Chandra X-ray Optics

Mirror elements are $\mathbf{0 . 8} \mathbf{~ m}$ long and from 0.6 m to 1.2 m diameter

The alignment of the mirrors from one end of the mirror assembly to the other (2.7 meters or 9 feet) is accurate to 1.3 micrometers (50 millionths of an inch) or about one fiftieth the width of a human hair!

Constellations and Bright Stars

Polaris (α UMi) - HIP 11767amelopardalis

Magnitude: 1.95 (B-V: 0.63)
Absolute Magnitude: -3.66
RA/DE (J2000): 2h31m50.9s/+89 ${ }^{\circ} 15^{\prime} 51.4^{\prime \prime}$
RA/DE (of date): $2 \mathrm{~h} 55 \mathrm{~m} 52 \mathrm{~s} /+89^{\circ} 20^{\prime} 41^{\prime \prime}$
Hour angle/DE: $3 \mathrm{~h} 13 \mathrm{~m} 33 \mathrm{~s} /+89^{\circ} 20^{\prime} 41^{\prime \prime}$
Az/Alt: $+359^{\circ} 24^{\prime} 04^{\prime \prime} /+35^{\circ} 08^{\prime} 37^{\prime \prime}$
Spectral Type: F7:Ib-IIv_SB
Distance: 431.42 Light Years
Parallax: 0.00756.5siopeia

Ecliptic, Equator, and Meridian

Image from Wikipedia: Attribution-ShareAlike
3.0 Unported (CC BY-SA 3.0)

Regulus (α Leo) - HIP 49669

Absolute Magnitude: -0.53
RA/DE (J2000): $10 \mathrm{~h} 08 \mathrm{~m} 22.1 \mathrm{~s} /+11^{\circ} 58^{\prime} 02.9^{\prime \prime}$
RA/DE (of date): $10 h 09 \mathrm{~m} 24 \mathrm{~s} /+11^{\circ} 52^{\prime} 23^{\prime \prime}$
Hour angle/DE: $20 h 00 \mathrm{~m} 4 \mathrm{~s} /+11^{\circ} 52^{\prime} 23^{\prime \prime}$
Az/Alt: . $+97^{\circ} 22^{\prime} 14^{\prime \prime} /+31^{\circ} 18^{\prime} 10^{\prime \prime}$
Spectral Type: B7V
Distance: 77.49 Light Years Parallax: 0.04209"

Canes Venatici

Alnitak (弓 Ori) - HIP 26727 A

Magnitude: 1.85 (B-V: -0.09)
Absolute Magnitude: -5.15 Absolute (I2000): 5h40m45.5s/-1056.33.2, RA/DE (of date): $5 \mathrm{~h} 41 \mathrm{~m} 44 \mathrm{~s} /-1^{\circ} 56^{\prime} 02^{\prime \prime}$
Hour angle/DE: Oh27m43s/-156'02"
\qquad Az/Alt: + $191^{\circ} 30^{\prime} 08^{\prime \prime} /+52^{\circ} 47^{\prime} 01^{\prime \prime}$ Sppećtral Type: 09.51b_SB Distance: 817.43 Light Years Parallax: 0.00399"

Canis Mino
Procyon

Monoceros

Canis Major

Columba*

Eridanus

Fornax
Puppis

Antlia

Capella (α Aur) - HIP 24608

Magnitude: 0.05 (B-V: 0.79) Absolute Magnitude: -0.51 RA/DE (J2000): $5 \mathrm{~h} 16 \mathrm{~m} 41.6 \mathrm{~s} /+45^{\circ} 59^{\prime} 48.0^{\prime \prime}$ RA/DE (of date): $5 \mathrm{~h} 18 \mathrm{~m} 7 \mathrm{~s} /+46^{\circ} 00^{\prime} 59^{\prime \prime}$ Hour angle/DE: Oh37m41s/+46 ${ }^{\circ} 00^{\prime} 59^{\prime \prime}$ Az/Alt: $+330^{\circ} 33^{\prime} 13^{\prime \prime} /+76^{\circ} 37^{\prime} 42^{\prime \prime}$ Spectral Type: M1:_comp Distance: 42.20 Light Years Parallax: 0.07729"

Alrescha (α Psc) - HIP 9487, A

Magnitude: $\mathbf{4 . 1 0 (B - V : - 0 . 0 3)}$.
Absolute Magnitude: 0.95
RA/DE (J2000): $2 \mathrm{h0} 0 \mathrm{~m} 2.9 \mathrm{~s} /+2^{\circ} 45^{\prime} 49.3^{\prime \prime}$ RA/DE (of date): $2 \mathrm{~h} 03 \mathrm{~m} 3 \mathrm{~s} /+2^{\circ} 51^{\prime} 19^{\prime \prime}$ Hour angle/DE: $4 \mathrm{~h} 06 \mathrm{~m} 25 \mathrm{~s} /+2^{\circ} 51^{\prime} 19^{\prime \prime}$ AZZAAlt: +255 ${ }^{\circ} 21^{\prime} 33^{\prime \prime} /+24$ Hel $^{\prime} 5^{\prime} 39^{\prime \prime}$ CAz/Alt: $+255^{\circ} 21^{\prime} 33^{\prime \prime} /+24^{\circ} 45^{\prime} 3$
Spectral Type: A2 Distance: 139.09 Light Years Parallax: 0.02345"
Parallax: 0.02345"

Fornax

Pisces

Great̃

Nebula in Andromeda (M 31 - NGC 224)
Type: Gataxy
Magnitude: $\mathbf{3 . 5 0}$
RA/DE (J2000): 0h42m42.0s/+41 $16^{\circ} 00.0^{\prime \prime}$
RA/DE (of date): $0 h 43 \mathrm{~m} 45 \mathrm{~s} /+41^{\circ} 22^{\prime} 17^{\prime \prime}$
Hour angle/DE: $5 \mathrm{~h} 25 \mathrm{~m} 42 \mathrm{~s} /+41^{\circ} 22^{\prime} 17^{\prime \prime}$ Az/Alt: +302 $52^{\prime} 31^{\prime \prime} /+27^{\circ} 55^{\prime} 35^{\prime \prime}$ Size: $+2^{\circ} 58^{\prime} 00^{\prime \prime}$

Pisces

A Beautiful Binary Star System Albireo

430 ly away
Look for Cygnus in summer

Albireo A is a binary, the yellowish color comes from a star with spectral type, K2, temperature $\sim 4000 \mathrm{~K}$ Albireo B is blue, type B8, temperature ~13,000K

Our Dynamic Sun: A Star at the Center of the Solar System

What is a Star?

What is a Star?

A star is an astrophysical body that produces its own light by thermonuclear reactions in its core.

Betelgeuse: A red giant star, about 600 ly away, 3500 K , $1,180 \mathrm{R}_{k}, 7.7 \mathrm{M}_{k}$.

To produce energy, hydrogen converts to Helium

Rigel: A blue-white star, about 770 ly away, 11,000 K, 80 R , $20 \mathrm{M}_{\mathrm{a}}$.

Stars Classified According to Color (Temperature)

Overseas Broadcast A Flash, Godzilla Kills Mothra

Layers of the Sun

The Corona

The Gonvection Zone
Energy continues to move toward the surface through convection curents of heated and cooled gas in the convection zone.

The ionized elements within the corona glow in the x-ray and extreme ultraviolet wavelengths. NASA instruments can image the Sun's corona at these higher energles since the photosphere is quite dim in these wavelengths.

Sun's Core
Energy is generated by thermonuclear reactions creating extreme temperatures deep within the Sun's core.

The Chromosphere

Coronal Streamers

The outward-flowing plasma of the corona is shaped by magnetic field lines into tapered forms called coronal streamers, which extend millions of miles into space.

The relatively tin layer of the Sun called the chromosphere is sculpted by magnetic field lines that restrain the electrically charged solar plasma. Occasionally larger plasma features-called prominences--form and extend far into the very tenuous and hot corona, sometimes ejecting material away from the Sun.

Sunspots

Sunspots are dark (and cooler) regions on the surface of the Sun. They have a darker inner region (the Umbra) surrounded by a lighter ring (the Penumbra).

Sunspots usually appear in groups that form over hours or days and last for days or weeks.

The earliest sunspot observations (c. 1609) indicated that the Sun rotates once in about 27 days.

Sunspots Examples

23 Full Cycles

Heinrich Schawbe discovered (1844) there was a cycle of sunspot number.

The average cycle lasts about 11 years, but ranges from 9 to 14.

The average maximum number is about 100, but ranges from 50 to 200.

The Corona and the Solar Cycle

```
2 8 ~ S e p ~ 1 9 9 1 ~
```

27 Mer 1992
26 Jan 1993
04 Nov 1.993
20 Sep 1994

Solar Eruptions

Solar Flares and Coronal Mass Ejections (CMEs)

This combo of SDO and Soho C2 shows X2-flare and a halo CME

Three distinct CMEs: First to right, second from north pole, third from far side of Sun. All three eruptions happened within hours of each other.

Animations!
c2_halloween_2003.mpg, c3_halloween_2003.mpg, X2_C2_combo_best.mpg

Space Weather

Space weather refers to the variable conditions on the Sun and in the space environment that can influence the performance and reliability of space-based and ground-based technological systems, as well as endanger life o health. Just like weather on Earth, space weather has its seasons, with solar activity rising and falling over an approximate 11 year cycle.

Sun's Magnetic Field

Strong and ever-changing magnetic fields drive the life of the Sun and underlie sunspots. These strong magnetic fields are the energy source for space weather and their twisting, shearing, and reconnection lead to solar flares

Solar Radiation Storms

Charged particles, induding electrons and protons, can be accelerated by coronal mass ejections and solar flares. These partides bounce and gyrate their way bombarding Earth from every direction. The fastest of these particles can affect Earth tens of minutes after a solar flare.

Geomagnetic Storms

A geomagnetic storm is a temporary disturbance of Earth's magnetic field typically associated with enhancements in the solar wind. These storms are created wher the solar wind and its magnetic field interacts with Earth's magnetic field. The primary source of geomagnetic storms is CMEs which stretch the magnetosphere on the nightside causing it to release energy through magnetic reconnection. Disturbances in the ionosphere (a region of Earth's upper atomosphere) are usually associated with geomagnetic storms.

Aurorae

Seen mostly at high latitudes, aurorae are produced when Earth's magnetosphere is disturbed.

Plasma from the magnetosphere precipitates into the upper atmosphere.

Reds are from oxygen Greens are from lower in atmosphere.

What Is an Eclipse?

An eclipse happens when one object blocks light from falling onto another object. The shadow of the eclipsed object falls onto the other object.

Cunas Tairss Gronixi

Images Used With Permission

Phases of the Moon

Solar Eclipses

Solab Fcuness Gromendo

Images Used With Permission

What You Can See

Zophia Edwards wideangle view, from Jay Pasachoff's Eclipse 2013 page

The Corona and Prominences

How to Safely Observe An Eclipse

No Special Rules for Lunar Eclipses

For Solar Eclipses:

Use a Kitchen Colander For Partial Phases

Eclipse Glasses and Welder's Glass

Von Braun Astronomical Society in Monte Sano State Park Observatories and Planetarium

Planetarium Program each Saturday night at 7:30 p.m. Telescope Observing after, weather permitting

