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Abstract—Machine learning aided cognitive anti-jamming
communications is designed, developed and demonstrated on a
live satellite-to-ground link. A wideband autonomous cognitive
radio (WACR) is designed and implemented as a hardware-in-
the-loop (HITL) prototype. The cognitive engine (CE) of the
WACR is implemented on a PC while the software-defined radio
(SDR) platform utilized two different radios for spectrum sensing
and actual communications. The cognitive engine performs spec-
trum knowledge acquisition over the complete spectrum range
available for the SATCOM system operation and learns an anti-
jamming communications protocol to avoid both intentional jam-
mers and inadvertent interferers using reinforcement learning.
When the current satellite-to-ground link is jammed, the cogni-
tive engine of the ground receiver directs the satellite transmitter
to switch to a new channel that is predicted to be jammer-free
for the longest possible duration. The end-to-end, closed-loop
system was tested on the NASA Space Communications and
Navigation (SCaN) Testbed on the International Space Station
(ISS). The experimental results demonstrated the feasibility of
satellite-to-ground cognitive anti-jamming communications along
with excellent anti-jamming capability of machine learning aided
cognitive protocols against several different types of jammers.

Index Terms—Cognitive anti-jamming communications, cogni-
tive radios, machine learning, Q-learning, reinforcement learning,
satellite communications, wideband autonomous cognitive radios.

I. INTRODUCTION

In [1]–[3], wideband autonomous cognitive radios (WACRs)
were proposed as radios that can self-configure the mode of
operation in response to the given state of the overall system
consisting of the radio, spectrum and the end-user. These
inherent capabilities make this technology especially suited
for various military, satellite, space and homeland security
applications. Indeed, as proliferation of wireless telecommu-
nications skyrocket, spectrum awareness and agility enabled
by WACR technology can be essential to both coexist with
friendly users as well as to counter or defeat malicious and
hostile agents.

Among many potential applications of WACR technology
is the cognitive anti-jamming communications. In [4]–[9],
several machine learning aided cognitive anti-jamming com-
munications protocols have been proposed earlier. Essentially,
all these approaches rely on the spectrum knowledge acqui-
sition capability of WACRs to scan the total spectrum of
interest and learn an effective anti-jamming communications

policy. The reinforcement learning based protocols of [4]–[7]
allow these policies to be updated in realtime possibly leading
to highly responsive anti-jamming systems. However, almost
all previously reported performance of these cognitive anti-
jamming communications protocols are based on simulations
and simple laboratory tests of one end of a link. In particular,
to the best of our knowledge, there has not been any effort to
implement an end-to-end closed loop cognitive anti-jamming
systems. In this paper, we report the design and development
of a WACR system for satellite-to-ground communications and
results of live closed-loop testing of the developed system
on the NASA Space Communications and Navigation (SCaN)
Testbed on the International Space Station (ISS).

The rest of the paper is organized as follows: Section II
provides a brief introduction to the wideband autonomous
cognitive radio technology along with the system architecture
developed for the particular satellite-to-ground cognitive anti-
jamming communications. Section III describes the cognitive
engine design for the cognitive anti-jamming communications.
Section IV details the live real-time testing of the developed
cognitive anti-jamming communications system on the NASA
SCaN Testbed and the experimental results. Section V pro-
vides an analysis of the results to demonstrate the feasibility
and effectiveness of cognitive anti-jamming communications
for SATCOM. Finally, the paper is concluded in Section VI.

II. WIDEBAND AUTONOMOUS COGNITIVE RADIO
TECHNOLOGY

The overall concept of wideband autonomous cognitive
radios, as envisioned in [1], [2], is shown on Fig. 1. It is
made of a reconfigurable RF front-end, a software-defined
radio (SDR) baseband module and a cognitive engine (CE).
The cognitive engine acts as the brain of the WACR by
managing the overall cognitive and intelligent operation of
the radio. The defining feature of a cognitive radio is its spec-
trum knowledge acquisition functionality which is commonly
referred to as spectrum sensing [1]. Note that the spectrum
knowledge acquisition may cover a broader functionality than
simple whitespace detection as meant in literature on spectrum
sensing [10].

As can be seen from Fig. 1, cognitive processing performed
within the cognitive engine can be divided in to two parts:
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Fig. 1: The concept and basic architecture of a wideband
autonomous cognitive radio.

spectrum knowledge acquisition and cognitive communica-
tions protocols. Spectrum knowledge acquisition deals with
gaining knowledge and comprehension about the states of the
RF environment, network, radio and the user [1]. The cognitive
communications protocols utilize this knowledge to decide
and act in order to achieve user communications objectives.
This module is responsible for issuing instructions to both the
SDR and the RF front-end on how to reconfigure their modes
of operations and parameters in response to the interpreted
states of the RF environment, radio network, WACR itself and
user. Thus, the key to cognitive operation is the design of the
cognitive engine.

In this work, a specific WACR system is designed for
the purpose of cognitive anti-jamming communications. The
system is comprised of an SDR that is controlled by the
cognitive engine implemented on a host PC.

III. COGNITIVE ENGINE DESIGN FOR COGNITIVE
ANTI-JAMMING COMMUNICATIONS

The cognitive engine consists of two parts: the spectrum
knowledge acquisition and cognitive anti-jamming communi-
cations protocol operation. It is assumed that the SDR may
only sense a single channel out of the total set of channels
available. The operation of the WACR is divided into two
stages: training and live communications. During training
mode, the cognitive engine performs only the spectrum sensing
and cognitive policy learning. In the developed system, this
involves the radio randomly picking a channel for sensing and
awaiting till the channel is jammed or interfered with. Once the
channel is jammed, the cognitive engine instructs the SDR to
sense another randomly picked channel while it uses the time
it took for the channel to get jammed as a measure of a reward
to learn an effective cognitive anti-jamming policy.

In this work, the policy learning was based on a modi-
fied version of the Q-learning algorithm [11], [12]. As has
been shown previously in [4]–[6], reinforcement learning ap-
proaches such as Q-learning can be highly effective in learning
good anti-jamming communications policies. In the current

cognitive engine design, the anti-jamming policy learning
problem was defined as learning in an RF environment that
undergoes state changes. For the purpose of learning, the index
of the WACR’s current channel is defined as the state. The set
of actions available to the radio is the total set of available
channels. During the training mode, once the current operating
channel st = s is jammed, the cognitive engine selects a
random channel index at = a as the new channel. If the reward
associated with this choice is r by the time the new channel
gets jammed, then the cognitive engine updates a Q-table using
the Watkin’s Q-learning algorithm as follows [1], [11]:

Q(s, a) = (1− α)Q(s, a) + α
(
r + γ max

a′
Q(a, a′)

)
(1)

where α ∈ [0, 1] and γ ∈ [0, 1] are the learning rate and
the forgetting factor. At the end of the training period, the
cognitive engine extracts an anti-jamming policy from the
learned Q-table:

π(s) = argmax
a′

Q(s, a′)

The advantage of this reinforcement learning approach is
that it allows this policy to be continuously updated during
the live communications. Indeed, when the satellite-to-ground
communications link is determined to be jammed by the
cognitive ground receiver, it updates the corresponding Q-table
entry using the same Q-learning (1). In this case, if we denote
the current Q-table at time t by Qt(., .), then the most up to
date cognitive anti-jamming policy at time t is given by

πt(s) = argmax
a′

Qt(s, a
′).

In order to prevent reinforcement learning getting trapped
in a local optima and facilitate the policy learning over all
possible regions of the state-action space, the actual action
selection also incorporates a possible exploration rate ε ∈ [0, 1]
[1], [4], [12]:

at(s) =

{
πt(s) with probability 1− ε

U(A\{s}) with probability ε (2)

where state at time t is st = s and U(A) denotes the uniform
distribution over the action set A.

IV. LIVE COGNITIVE ANTI-JAMMING COMMUNICATIONS
ON NASA’S SCAN TESTBED

The SCaN Testbed is an externally mounted payload on-
board the ISS housing three software defined radios capable of
reconfiguration to support a variety of experiments. As shown
in Fig. 2, fixed and steerable antennas on the SCaN Testbed
multiplex with the radios enclosed to support links with other
satellites as well as ground stations. The Testbed operates at
S- and Ka-band frequencies, but Ka-band is not available for
direct-to-ground links [13]. One objective of SCaN Testbed is
to demonstrate the Space Telecommunications Radio System
(STRS) Architecture, which promotes the reuse of communi-
cations software [14]. There is a growing library of STRS radio
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Fig. 2: NASA’s SCaN Testbed on board the ISS.

waveform applications that have been developed for SCaN
Testbed SDRs.

In addition to SCaN Testbed, NASA Glenn Research Center
(GRC) also operates an S-band ground station, which can
support Testbed experiments. For this WACR experiment a
temporary antenna was set up for the jammer signal in
proximity to the main tracking antenna as shown in Fig. 3. This
jammer was configured to emulate a fixed terrestrial signal
source that is uncooperative with the ground station receiving
dish. Ground terminals can be particularly sensitive to this type
of interference as signals from these sources are often stronger
than ones from the space asset. Even when the antenna is
not pointed directly at the jamming source, interference can
still occur due to the antenna sidelobes or multipath. Each
low-earth orbit (LEO) satellite pass is approximately eight
minutes long. During these relatively short passes interference
of this type can cause a significant decrease in the quality
of service (QoS). Figure 4 shows the power received at the
ground station from both SCaN Testbed and the jammer for
the same gimbal motion. During the pass there are periods
where the jammer is stronger than the desired signal and vice
versa. This variation throughout the pass can be challenging
for a human operator to mitigate as the interference would
appear unpredictable. Application of a CE for this volatile
environment will potentially improve satellite reception.

A live cognitive satellite-to-ground anti-jamming commu-
nications experiment was performed using an SDR that is
currently available on the SCaN Testbed. The testing utilized
5 MHz of licensed spectrum in S-band that was divided into
nine 500 kHz-wide channels with a small guard band on each
end, as shown in Figure 5. This experiment required that the
previously-existing adaptive coding and modulation system
described in [15], which includes a Digital Video Broadcasting
Second Generation (DVB-S2) compliant waveform, be mod-
ified to support rapid changes in downlink carrier frequency
offset based on command parameters embedded within the
uplink data stream. Throughout the experiment, the following

Fig. 3: NASA GRC Ground Station with jamming antenna
(foreground).

Fig. 4: Example plot showing satellite and jammer power
versus time.

physical layer downlink parameters were held static: rate-1/4
QPSK with short frames (16200 bits), channel symbol rate of
300 kBaud, pilot symbol insertion enabled, and a square-root
raised cosine filter rolloff of 0.20.

Figure 6 shows the closed-loop, end-to-end cognitive
satellite-to-ground communications systems architecture. The
key element of this architecture is the Bluecom Systems Cog-
nitive Engine, Radiobot 1.0. For the purpose of this live SCaN
Testbed experiment, the Cognitive Engine was implemented in
software on a host PC. The WACR System was completed by
combining the software-implemented Radiobot 1.0 CE with
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Fig. 5: Frequency plan for the SCaN Testbed cognitive
satellite-to-ground communications experiment.

Fig. 6: Experimental Set up of the cognitive satellite-to-ground
communications systems architecture.

the SDR platform. In the absence of a single commercial
SDR that supports both spectrum sensing as well as cognitive
satellite communications, the SDR platform of the WACR
was achieved by using two SDRs: A National Instruments
USRP 2953R was used as the SDR platform for the spectrum
knowledge acquisition branch of the WACR, while a NASA
GRC-developed radio based on the Xilinx ML605 evaluation
board, was used as the SDR platform on the cognitive satellite
communications branch, as shown in Fig. 7.

Fig. 7: WACR system made of two SDR modules for cognitive
satellite-to-ground communications on the SCaN Testbed.

As can be seen from Fig. 6, the ML605 SDR is capable
of transmitting a binary phase-shift keying (BPSK) waveform

over the S-band frequency range. The ML605 provides an
Ethernet interface to the Host PC running the Bluecom Cog-
nitive Engine. Cognitive decisions made by the Radiobot CE
are forwarded to the ML605 as a channel index, which then
transmits these over the uplink to the SCaN Testbed SDR
instructing it to switch to this new channel in order to help
the ground receiver avoid getting jammed.

The spectrum sensing is performed with the aid of a USRP
2953R SDR. In the so-called switch-after-getting jammed
configuration of the cognitive anti-jamming implementation,
the Radiobot Cognitive Engine listens to the current channel
on which the SCaN Testbed SDR is transmitting to the
ground receiver. In order to allow the spectrum sensing to be
achieved without knowing the exact details of the waveform,
and in particular, without having to demodulate the signal,
the Radiobot Cognitive Engine only assumed the knowledge
of the communication’s link(DVB-S2) modulation type and
the order. Based on this information, the Radiobot Cognitive
Engine was able to determine when the current channel is
jammed or interfered with. It used this information to both
learn a cognitive anti-jamming communications policy as well
as to instruct the SCaN Testbed radio that it must switch
its operating channel to a new channel. The cognitive anti-
jamming communications protocol, implemented on Radiobot
1.0 cognitive engine, allows the ground station receiver to learn
an effective anti-jamming communications policy so that this
new channel will most likely stay jammer-free for the longest
possible duration.

Live testing of the cognitive anti-jamming communications
system was conducted at NASA GRC in Cleveland, Ohio
during two weeks in April 2018 by a project team of Bluecom
Systems’ and NASA GRC’s personnel. Two types of jammer
signals were considered for these tests: a sweep jammer that
sequentially jams the channels and a Markov jammer that jams
channels according to a certain probability distribution over the
channel indices. Both jammers were synthesized in software
and transmitted using an independent SDR located near the
satellite ground station antenna (Fig. 3). Note that the jammer
antenna is a fixed antenna, whereas ground station satellite
antenna is gimbaled. Indeed, the ground station’s antenna
orientation varies during each pass of the ISS in order to track
the signal from the SCaN Testbed SDR.

Table I summarizes the anti-jamming performance data
recorded during the above tests. All time data is scaled such
that one time-unit equals one sensing period (SP) of the cogni-
tive engine. The number of channel transitions indicates how
many times the Radiobot switched channels during an event-
pass due to signal quality falling below a certain specified
quality which it interprets as channel being jammed. The
total number of sensing periods with sufficient signal quality
between channel transitions is a measure of the total time the
WACR was able to receive the signal from the SCaN Testbed
above this specified quality.

As can be seen from the Test Plan in Table I, the learning
performance of the Radiobot was to be evaluated by comparing
with a random channel selection anti-jamming policy. It is,
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Test
# Description

Total Number of SPs
During the Complete

Event-pass

Total Number of SPs with
Sufficient Signal Quality
Between CH Transitions

Number of CH
Transitions

1 Jammer type: sweep jammer.
Policy type: a random policy. 214710 29380 21

2 Jammer type: sweep jammer.
Policy type: a random policy. 218545 96337 77

3
Jammer type: sweep jammer.

Policy type: a pre-learned CAJ
policy with ε = 0.3.

235192 132380 81

4
Jammer type: sweep jammer.

Policy type: a pre-learned CAJ
policy with ε = 0.3.

120370 298 4

5 Jammer type: Markov jammer.
Policy type: a random policy. 192751 51412 67

6
Jammer type: Markov jammer.
Policy type: a pre-learned CAJ

policy with ε = 0.
229520 72908 79

7
Jammer type: Markov jammer.
Policy type: a pre-learned CAJ

policy with ε = 0.3.
266661 112660 115

TABLE I: Raw test data from the SCaN Testbed experiment on cognitive anti-jamming (CAJ) communications.

however, important to point out that the random channel
selection policy does not mean a traditional radio. Although
the channel selection policy is random, still the radio is a
WACR and there are some very important cognitive functions
overseen by the Radiobot cognitive engine in order for the
radio to achieve successful channel transitions even in this
case. Specifically, channel transitions are triggered as a result
of the WACRs spectrum sensing that allows it to detect the
jammer existence. Without this cognitive operation, the radio
may not have achieved channel transitions immediately when
it is jammed. Hence, the performance comparison against the
random channel selection policy must be understood only
as a comparison of the effectiveness of the learning process
rather than the effectiveness of the cognitive communications
operation through the Radiobot. Both policies are enabled by
the Radiobot cognitive engine, and thus the performance of
all tests are a validation of the applicability of the WACR to
achieve successful cognitive anti-jamming communications.

For all flight tests, a Bluecom software synthesized 64QAM
signal at a rate of 200 kSymbols/sec was used as the jammer
signal. In the case of the sweep jammer, the synthesized
signal was made to sweep across the 9 channels in the
order of channel 1 to 9 sequentially. Similarly, in the case
of the Markov jammer, the synthesized signal was made
to hop across the 9 channels according to a fixed Markov
pattern. These jammer signals were transmitted from a separate
USRP 2953R that was located at a different location on the
NASA GRC from where the Radiobot cognitive engine and
its associated USRP 2953R were located. The jammer signal
from this secondary USRP 2953R was then transmitted over
the air from an antenna located near the SCaN Testbed Ground
Station Receiver.

V. ANALYSIS OF SATELLITE-TO-GROUND COGNITIVE
ANTI-JAMMING COMMUNICATIONS EXPERIMENT RESULTS

First of all, as can be observed from the Table I, Test
#4 had corrupted results. This was due to the presence of
an unexpected fixed interference in the frequency range that
the cognitive anti-jamming experiment was performed during
this particular event-pass. It was later determined that this
interference was from another satellite transmitter on-board the
SpaceX Dragon spacecraft docked to ISS. Since its presence
could only be detected once the event-pass at GRC started
and since these event-passes are very short, it did not allow
sufficient time to request turning off the transmission, render-
ing Test #4 results useless. Hence, in the following discussion
we will ignore the Test #4 data. However, it must be pointed
out that, such static interference can easily be handled by the
developed cognitive anti-jamming communications protocol
with a small modification to the algorithm that was not
implemented at the time of this experiment.

Table II uses the raw data in Table I to compute metrics
that quantify the performance of the cognitive anti-jamming
communications. Note that, the average time between two
channel transitions is not a direct measure of the effectiveness
of cognitive anti-jamming algorithm. The reason is that it does
not show us exactly how much of that time the cognitive
ground receiver was actually able to receive the signal from
the SCaN Testbed. It is possible that the average time between
two channel transitions is high in certain scenarios giving the
impression that the cognitive ground receiver was selecting
channels that did not get jammed for a long period. However,
this interpretation is incorrect because the ground receiver will
stay in a new channel until it receives the satellite signal
correctly. Hence, it is possible that the average time between
two channel transitions is high because the receiver had to wait
in a new channel for a longer time before it first was able to
receive the signal from the SCaN Testbed correctly. This may
be an indication that actually the policy was so bad that the
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Test # Jammer
Type Policy Type

Avg Time
Between Two

CH Transitions

Avg Time in a CH
Without Being

Jammed

Avg Fraction of Time in
a CH Without Being

Jammed
1 Sweep. Random policy. 10224 1399 0.1368
2 Sweep. Random policy. 2838 1251 0.4408

1 & 2 Sweep Random policy. 6531 1325 0.2029

3 Sweep.

Pre-learned and
continuously updated
through exploration

with ε = 0.3.

2904 1634 0.5627

5 Markov. Random policy. 2877 767 0.2666

6 Markov. Pre-learned and
fixed. 2905 922 0.3174

7 Markov.

Pre-learned and
continuously updated
through exploration

with ε = 0.3

2319 980 0.4226

TABLE II: Performance evaluation of SCaN Testbed experiment on cognitive anti-jamming communications.

channels it selected were either already jammed or got jammed
immediately when it starts to receive on it. Hence, in Table
II, we have proposed two additional performance metrics to
better quantify the cognitive anti-jamming performance: the
first is the average time the WACR stays in a channel without
its signal being jammed (average time in a channel without
being jammed). The second metric is the average fraction of
time the radio spends in a channel without being jammed with
respect to the average time between two channel transitions.

Both these metrics are needed to understand the full impact
of an anti-jamming policy. The reason that the average time
in a channel without being jammed is not adequate to fully
characterize the performance should also be clear from the
above discussion regarding why the average time between two
channel transitions is not adequate as a performance metric.
Indeed, it is possible that when the radio switches to a channel,
it may find that channel already jammed. In such a situation,
the radio may spend a considerable amount of time waiting in
that channel till the channel becomes free of jamming. Once
this happens, perhaps the radio may be able to stay in that
channel for a significant amount of time without again getting
jammed. This may result in a large average time in a channel
without being jammed. However, it does not tell anything
about how much time it wasted waiting in the channel for the
channel to be free of jamming to begin with. It is reasonable
to expect that a good channel selection policy will make the
radio to switch to a new channel that not only leads to a longer
average time in a channel without being jammed, but also to
a shorter wait-time for the channel to be actually jammer-free
once the radio switches to it. Hence, in addition to the average
time in a channel without being jammed, in Table II we also
compute the average fraction of time the radio spends in a
channel without being jammed with respect to the average
length of time the radio spends in a channel (which is the
time between two channel transitions).

In the case of a sweep jammer our original intent was to be
able to repeat the same experiment twice so we may average
the performance over two trials to reach better conclusions.
Although in tests #1 and #2 we were able to achieve this for

the random policy, since Test #4 had to be discarded we could
not do this for test #3. In the third row of Table II we have
shown the average performance of the random policy against
a sweep jammer obtained by averaging the tests #1 and #2.

As we observe from Table II, the comparison between
Tests #1 and #3 shows the excellent cognitive anti-jamming
performance improvement achieved by using the Radiobots
cognitive anti-jamming communications policy. With the ran-
dom channel selection policy, the radio stays in a channel for
an average time of 1399 time-units without being jammed.
However, when it uses the cognitive anti-jamming communi-
cations policy with an exploration rate of ε = 0.3, it can stay
in a channel for an average time of 1634 time-units without
being jammed. To put this in to context, assume an ideal
system in which the jammer moves from one channel to the
next within exactly one sensing period. In this case, it can be
shown that the optimal cognitive anti-jamming policy against
a sweep jammer will allow the radio to stay in a channel
without getting jammed for 8 time-units. On the other hand,
the average time in a channel without being jammed, that can
be achieved by a random policy in this ideal system is 4.5 time-
units. Hence, the best performance we can expect in such an
ideal system is an improvement of about 78% of the average
time in a channel without being jammed with respect to a
random channel selection policy. The performance in Test #3
versus the performance of Test #1 shows that it has achieved
about 22% of this best possible performance even with a policy
learned under laboratory conditions along with completely
un-optimized parameter settings. The full significance of the
above performance improvement can be viewed when it is
combined with the performance metric of average fraction of
time in a channel without being jammed. Indeed, note from
Table II that out of the total time the radio spends in a channel,
only about 14% is jammer-free when it uses a random policy.
On the other hand, when it follows the cognitive anti-jamming
policy, about 56% of the time in a channel it will find itself
be free of jamming. That is 300% of improvement.

Perhaps a better evaluation of the effectiveness of cognitive
anti-jamming communications against a sweep jammer can be
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obtained by comparing the performance of test #3 to the aver-
age performance of tests #1 and #3 shown in Table II. Indeed,
this shows that in following a random channel selection policy
the radio may stay only about 20% of its time in a channel
jammer-free compared to that of 56% with the cognitive anti-
jamming policy. This is a considerable advantage since with a
random policy the radio will stay idly in a channel for a long
duration expecting it to become jammer-free. Moreover, it is
about 30% of the best possible performance an ideal policy
would have achieved under complete synchronous conditions.

We may draw similar conclusions regarding the perfor-
mance against a Markov jammer from the results of tests #5,
#6 and #7 shown on Table II. Comparison of tests #5 and #6,
shows that the pre-learned policy against the Markov jammer
under laboratory conditions still performs well enough even
during the flight testing. Indeed, the average time in a channel
without being jammed has increased by more than 20%
compared to that with the random channel selection policy.
The average fraction of jammer-free time in channel has also
improved with the CAJ policy to about 32% as opposed
to 27% achieved by random channel transitions. As can be
seen from Table II, allowing exploration with ε = 0.3 has
further improved the performance of cognitive anti-jamming
communications against a Markov jammer both in terms of
the average time in a channel without being jammed as well
as the average fraction of jammer-free time in channel.

Thus, from the results of these tests we may conclude that:
• WACR is an effective anti-jamming tool regardless of

what type of jammer, learning and channel selection
algorithms are used.

• Reinforcement learning aided cognitive anti-jamming
communications policy significantly outperforms the ran-
dom channel selection policy, both in terms of the average
time in a channel without being jammed as well as the
fraction of time in a channel without being jammed.

• Allowing learning-based policy update and policy explo-
ration during actual cognitive communications will lead
to better cognitive anti-jamming performance.

• Best possible performance improvements with the cogni-
tive anti-jamming communications policy can expected to
be higher than what is observed in these tests since these
tests only allowed a very short learning period length
and all parameters of the algorithms were un-optimized
arbitrary values.

VI. CONCLUSION

A complete cognitive anti-jamming communications WACR
system was designed, implemented and tested on an ac-
tual closed-loop satellite-to-ground communications link. The
WACR system was made of a cognitive engine implemented
in software run on a host PC and two SDRs controlled by this
cognitive engine. The anti-jamming communications system
was implemented to operative over a 5 MHz wide S-band
spectrum that was divided into nine channels. The satellite
transmitter was an S-band SDR that currently available on
the SCaN Testbed on the ISS. The cognitive engine used a

reinforcement learning approach to learn an effective anti-
jamming communications policy. When the current satellite-
to-ground link is jammed during live communications, the
cognitive engine used this policy to instruct the SCaN Testbed
SDR to switch the transmission to a new channel that will
most likely stay jammer-free for the longest possible duration.
Live testing was performed against two types of terrestrial-
born jammers: a sweeping jammer and a Markov jammer.
Results obtained from a sequence of live experiments over
several satellite passes over the ground station showed that
indeed machine learning aided cognitive anti-jamming com-
munications provided by WACR technology is a feasible
technology for future satellite and space communications.
Moreover, the experimental results showed that even under
highly dynamic challenging channel conditions, reinforcement
learning based approaches can be very effective in learning
good anti-jamming communications policies.
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