

National Aeronautics and Space Administration

UAS Contingency Management:

The Effect of Different Procedures on ATC in Civil Airspace Operations

Outline

- Background
- Method
- Results
- Discussion
- Limitations and Future Research

- Unmanned Aerial Systems (UAS) in the National Airspace System (NAS):
 - Demand has skyrocketed for routine access to the NAS
 - Military, scientific, national security and emergency management applications have all called for easier admittance
 - Currently required to obtain Certificate of Authorization (COA), a time consuming, restrictive process
 - Also requires air traffic controllers (ATC) to block airspace, which can reduce airspace efficiency

Barriers to Integration:

- Lack of agreed upon minimum performance standards
 - A chief concern is contingency management
 - How will UAS deal with emergency events, such as the loss of the command and control link (i.e., lost link)?
 - How will procedures impact the rest of the system?
 - Standardized and predictable contingency management procedures are essential to integration

> Current Behaviors:

- UAS response to contingency events are agreed upon within individual COAs with the FAA
 - UAS may:
 - Return to base
 - Continue to destination
 - Return to mission altitude

Purpose of Study:

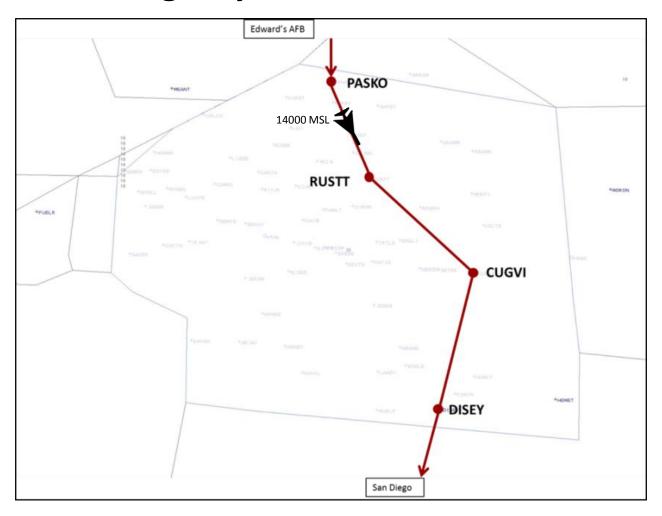
- Examine the impact of existing UAS contingency management procedures on air traffic control (ATC)
 - How do current UAS behaviors impact a controller's ability to maintain a safe and efficient airspace?
 - How do the behaviors impact controller's self-reported workload?

Hypothesis:

- More sudden and/or sizable maneuvers would negatively impact
 ATC performance and workload
 - Smaller maneuvers would have less impact on surrounding traffic
 - Less immediate maneuvers would provide time for pilot to inform ATC

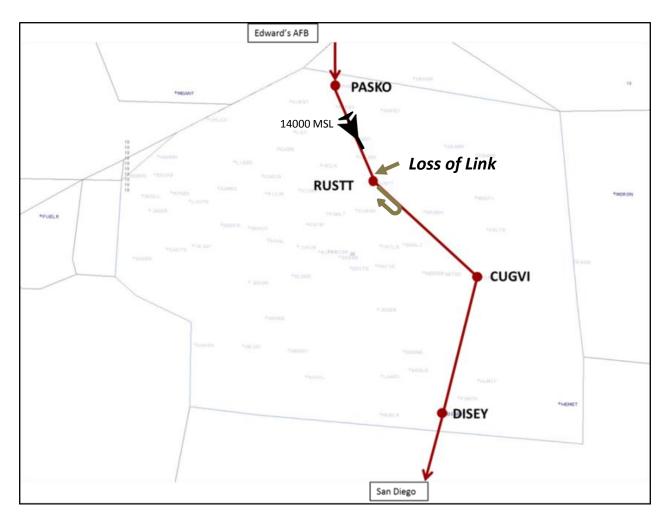
Contingency Behavior

- Four current contingency behaviors were modeled in this study
 - 3 behaviors for responding to lost link
 - 1 behavior for responding to severe loss in oil pressure
- Developed through:
 - Review of existing documentation
 - MQ-9 flight manual
 - Joint Unmanned Aircraft Systems CONOPS
 - Semi-structured interviews
 - 3 current UAS pilots from 2 different platforms


Contingency Behavior

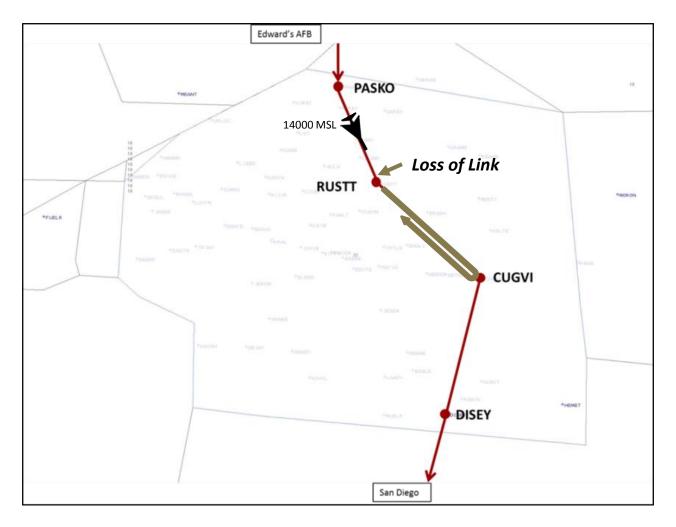
ID	Event	Contingency Behavior	Time to Execute
C1	N/A	N/A	N/A
C2	Lost Link	Return to Base (incl. 180° turn)	1 min
C3	Lost Link	Return to Base (incl. 180° turn)	8 min
C4	Lost Link	Maintain Course (Return to Mission Altitude)	1 min
C 5	Drop in Oil Pressure	Land at Emergency Site (incl. descent of maximum 10000ft)	Immediate

> C1: No Contingency Event


Contingency Behavior

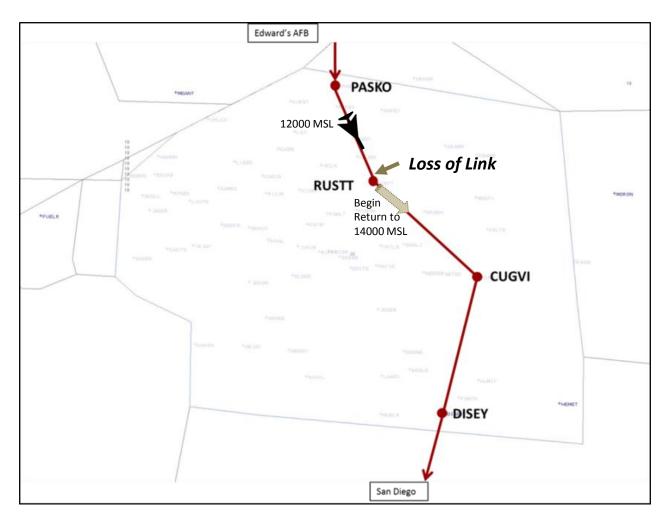
ID	Event	Contingency Behavior	Time to Execute
C1	N/A	N/A	N/A
C2	Lost Link	Return to Base (incl. 180° turn)	1 min
C3	Lost Link	Return to Base (incl. 180° turn)	8 min
C4	Lost Link	Maintain Course (Return to Mission Altitude)	1 min
C5	Drop in Oil Pressure	Land at Emergency Site (incl. descent of maximum 10000ft)	Immediate

> C2: Return to Base in 1 Minute


Contingency Behavior

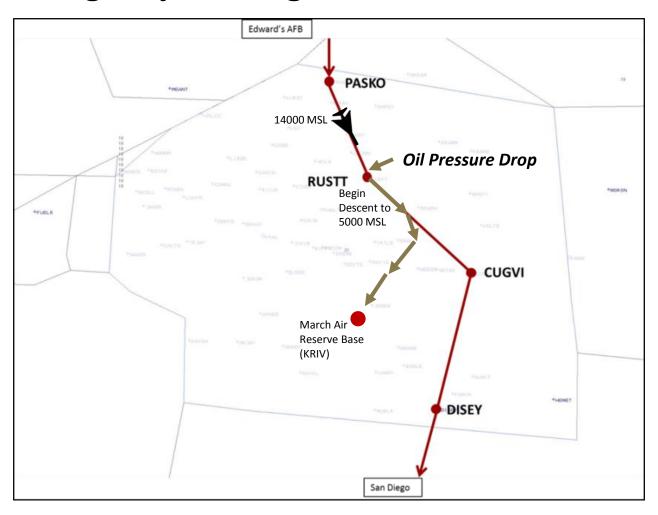
ID	Event	Contingency Behavior	Time to Execute
C1	N/A	N/A	N/A
C2	Lost Link	Return to Base (incl. 180° turn)	1 min
C3	Lost Link	Return to Base (incl. 180° turn)	8 min
C4	Lost Link	Maintain Course (Return to Mission Altitude)	1 min
C5	Drop in Oil Pressure	Land at Emergency Site (incl. descent of maximum 10000ft)	Immediate

> C3: Return to Base in 8 Minutes


Contingency Behavior

ID	Event	Contingency Behavior	Time to Execute
C1	N/A	N/A	N/A
C2	Lost Link	Return to Base (incl. 180° turn)	1 min
C3	Lost Link	Return to Base (incl. 180° turn)	8 min
C4	Lost Link	Maintain Course (Return to Mission Altitude)	1 min
C 5	Drop in Oil Pressure	Land at Emergency Site (incl. descent of maximum 10000ft)	Immediate

> C4: Maintain Course Return to Mission Alt


Contingency Behavior

ID	Event	Contingency Behavior	Time to Execute
C1	N/A	N/A	N/A
C2	Lost Link	Return to Base (incl. 180° turn)	1 min
C3	Lost Link	Return to Base (incl. 180° turn)	8 min
C4	Lost Link	Maintain Course (Return to Mission Altitude)	1 min
C5	Drop in Oil Pressure	Land at Emergency Site (incl. descent of maximum 10000ft)	Immediate

> C5: Emergency Landing at KRIV

> Contingency Behavior

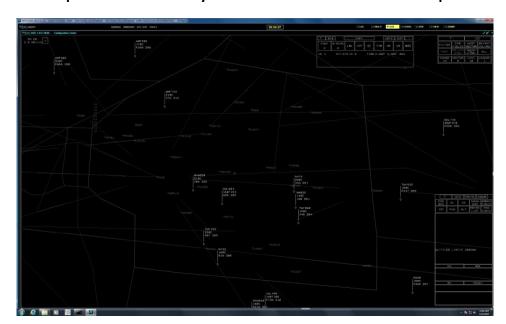
ID	Event	Contingency Behavior	Time to Execute
C1	N/A	N/A	N/A
C2	Lost Link	Return to Base (incl. 180° turn)	1 min
C3	Lost Link	Return to Base (incl. 180° turn)	8 min
C4	Lost Link	Maintain Course (Return to Mission Altitude)	1 min
C 5	Drop in Oil Pressure	Land at Emergency Site (incl. descent of maximum 10000ft)	Immediate

- Hypothesize that C3 and C4 will be least impactful on ATC performance
 - C2 and C5 most impactful

Experimental Design

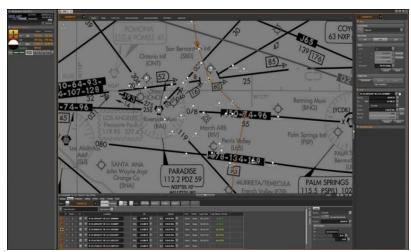
- One-Way Repeated Measures Factorial
 - Contingency Behavior (5 levels, within subjects)
 - Counterbalanced order of presentation within each block across participants
 - Block (2 levels; within subjects)
 - No systematic difference between levels
- Experimental Scenarios
 - 2 Blocks
 - 5 experimental runs per block
 - Experimental runs lasted 17 min
 - Each trial followed up by workload and general questionnaire

Participants


- 14 Retired Controllers (Male):
 - Civilian ATC Experience:
 - TRACON 14/14 (26 years on avg.)
 - 13/14 had experience working East Feeder
 - Tower 10/14
 - Center 2/14
 - Military ATC Experience:
 - TRACON 5/14
 - Tower 4/14

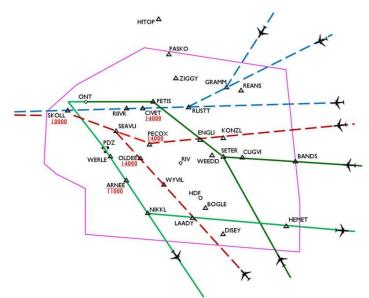
Apparatus

- Multi Aircraft Control System (MACS) provided controller display
 - Display System Replacement (DSR) presentation of Southern California TRACON [East Feeder/ZLA20]
 - Hybrid sector airspace positively controlled from surface to FL230
 - Participants used keyboard and mouse for inputs



> Apparatus

- Vigilant Spirit Control Station (VSCS) provided simulated UAS ground control station
 - Allowed for simulated injection events (e.g., loss link and severe oil loss)
 - UAS pilot provided with script when coordinating with ATC following contingencies
 - MQ1 Predator (Modified)
 - Speed: 110 knots
 - Mission Alt: 14000 MSL


-Vigilant Spirit Control System, AFRL-

> Apparatus

- Traffic Scenarios
 - Designed off of a busy, current day at SoCal TRACON
 - Included arrivals into LAX and ONT, as well as overflights (in addition to single UAS)
 - Manned aircraft were level when entering sector
 - Arrivals had to be manually descended by ATC

Procedure

- Task:
 - Maintain safe separation
 - 3nm and 1000ft (approach airspace separation requirements)
 - Ensure LAX arrivals meet appropriate altitude restrictions.
 - LAX arrivals required to exit sector @SKOLL at 10000 MSL
 - Descent ONT arrivals to 5000 MSL for visual approach
 - No coordination with ONT tower
 - Manage overflights (including UAS)
- Training
 - Trained on MACS software and overall sector operations
 - Included brief on UAS characteristics and potential contingencies
 - 3 practice scenarios (2 with only manned AC, 1 with UAS)
 - No practice on UAS contingency behaviors

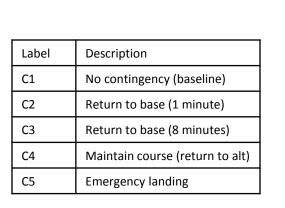
Metrics

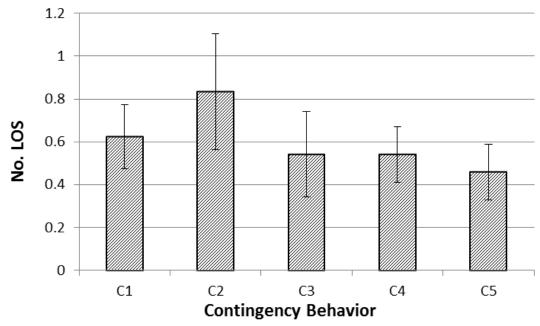
- ATC Performance
 - Safety
 - Number of Losses of Separation (violation of 3nm and 1000ft)
 - Workload
 - Handoff Accept Time
 - Time elapsed between adjacent sector's initial handoff and experimental controller's acceptance)
 - Efficiency
 - Avg. time in sector per AC
 - Avg. distance flown per AC

Subjective Ratings

- NASA-Task Load Index
 - Mental Demand, Physical Demand, Temporal Demand, Performance Degradation, Effort and Frustration
- Post-Trial Questionnaire
 - Assessed impact of contingencies on controller's self reported separation strategies
- Post-Simulation Questionnaire
 - Queried controllers on overall simulation fidelity and compared across levels of Contingency Behavior

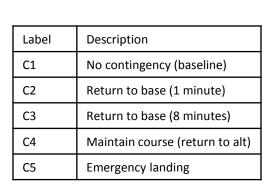
> Analysis

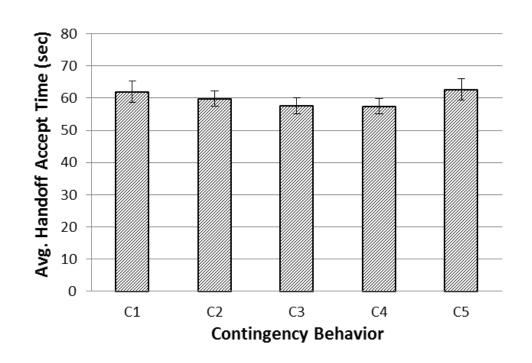

Data analyzed using a 5 (Contingency Behavior: C1-C5) x 2 (Block: 1-2)
 Repeated Measures ANOVA



Safety

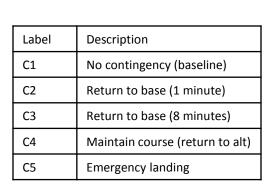
- No significant main effect of Contingency Behavior on Number of LOS (p>.05)
 - LOS were low across all levels of Contingency Behavior

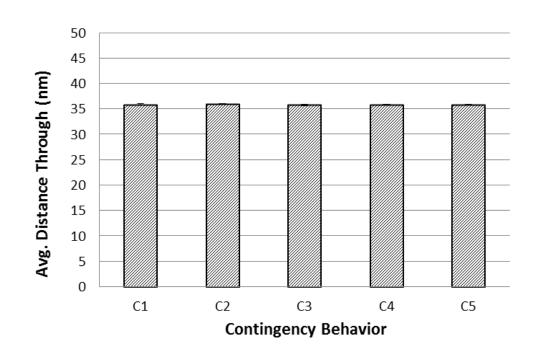




Workload

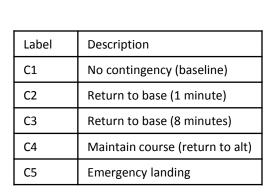
- No significant main effect of Contingency Behavior on number of handoff accept time (p>.05)
 - Handoff accept times were low and stable across conditions

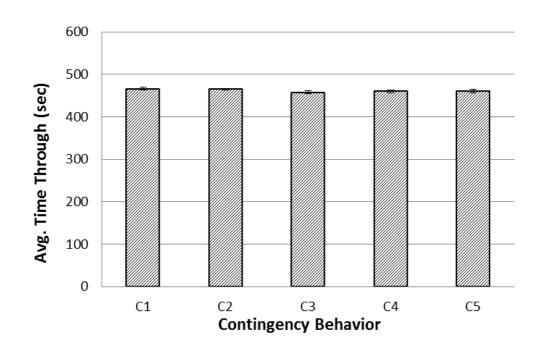




Efficiency

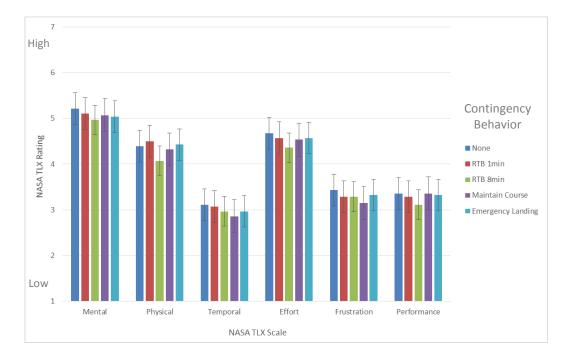
- No significant main effect of Contingency Behavior on Distance Through Sector (p>.05)
 - Controllers remarkably consistent between conditions





Efficiency

- No significant main effect of Contingency Behavior on Time Through Sector (p>.05)
 - Controllers consistent across conditions

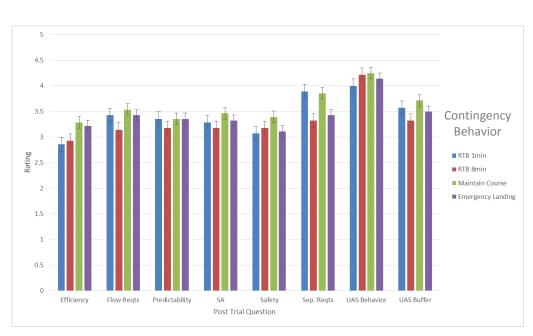


Results: Subjective Ratings

> NASA-TLX

- No significant main effect of Contingency Behavior on any of controller's self-reported workload scales (p's>.05)
 - Mental, Physical and Effort demands slightly above average
 - Temporal, Frustration and Performance demands slightly below

Label	Description	
C1	No contingency (baseline)	
C2	Return to base (1 minute)	
C3	Return to base (8 minutes)	
C4	Maintain course (return to alt)	
C5	Emergency landing	


Results: Subjective Ratings

Post-Trial Questionnaire

- No significant effect on any of the 8 questions (p's>.05)
 - Rating: 0 (Strongly Disagree) 5 (Strongly Agree)
- Questions included:
 - Impact on ability to safely/efficiently manage sector
 - Impact on situation awareness
 - Predictability of behavior
 - Buffer size for UAS

Label	Description
C1	No contingency (baseline)
C2	Return to base (1 minute)
C3	Return to base (8 minutes)
C4	Maintain course (return to alt)
C5	Emergency landing

Results: Subjective Ratings

Post-Simulation Questionnaire

- Controller's were asked their preferred contingency behavior (from *Most Impactful* to *Least Impactful*) in terms of:
 - Safety
 - Efficiency
 - Workload
- For all 3 questions controllers responded:
 - C4 (Return to Mission Alt/Maintain Pre-Programmed Course)
 - C3 (Return to Base in 8min)
 - C2 (Return to Base in 1min)
 - C1 (Emergency Landing)

Study suggests:

- Contrary to hypothesis, current contingencies found to have no positive or negative effects on controller performance or subjective reports
- No differences between contingencies or relative to baseline condition (with no contingency event)
 - Losses of separation, handoff accept times, time and distance through sector saw no significant effects
 - Workload, post trial and post simulation questionnaires also failed to see effects
- However, when asked, controllers found the Return to Altitude/Maintain Course & the 8 minute Return to Base contingencies to be the least impactful
 - Emergency landing contingency was rated as most impactful

Explanation of findings

- Controllers commented that dealing with a single UAS (even when operating under a variety of contingency procedures) was not problematic
 - Nearly all controllers noted that they frequently dealt with "special" AC while working ZLA20 (East Feeder)
 - DEA and FBI routinely flew helicopters or fixed-wing AC at low altitudes with unpredictable routing
 - Participants had worked East Feeder, likely very motivated/talented controllers
- Suggests controllers' skill sets were robust enough to accommodate a single, unpredictable, slow-moving AC
- FAA likely designs contingency procedures that are intentionally minimally impactful

Limitations:

- No "true" baseline scenario i.e., trial without UAS present
 - May have obscured comparisons
- Looked only at approach airspace that was relatively conflict free
 - Used a hybrid sector (part approach, part center) with traffic that was flying level
 - Class A (no VFR included in scenario)

> Recommendations for Future Research:

- Present the contingencies within more difficult contexts
 - Higher density traffic
 - Different airspace (e.g., Class E or D)
 - Script complex conflictions with the UA
- Simulate different types of contingencies
 - Context-sensitive contingencies
 - UAS behavior is dictated by the current airspace or operation
 - Design purposefully disruptive contingencies to demonstrate sensitivity of our metrics
 - May make it easier to accept null hypothesis
- NORTHCOMM is currently testing impact of contingency operations in flight test conditions

> Questions?