

Mission Goals and Objectives

- Demonstrate simple model organisms as "biosentinels"
 - Biologically based sensors for hazards to humans
 - Particularly for radiation, beyond low Earth orbit (LEO)
 - > Compare/correlate to physical radiation measurements
 - DNA damage: 1st space demo. of biosentinel concept
 - Validate radiation damage models for biology
 - Develop "transfer standards" from biosentinels to humans
 - Support development of radiation protection
 - Inform mitigation strategies, actions
- Conduct life science studies in multiple space environments relevant to human exploration
 - Deconvolute effects on biological systems

Implementation

- 6U autonomous nanosatellite
 - 4U payload, including radiation sensors
 - ≥ 2U for bus + ADCS including µpropulsion
 - ~ 14 kg total mass
 - ∼ 23 W average power (deployable solar panels)
 - Mission duration: 18 months

o similar μ-gravity but LEO radiation environment

Identical P/L for delayed-synchronous ground control

- 1 x**g**; low radiation
- Radiation exposure ground studies (e.g. BNL)
 - 1 xg; acute, defined radiation doses

Launch

Artist's rendering of the Space Launch System

- Launched as a secondary payload on EM-1
 - Exploration Mission 1:
 1st flight of NASA's
 Space Launch System
- Exact deployment orbit of 2° payloads still being determined
 - Will likely be Earthtrailing, heliocentric orbit
 - Far outside the LEOs typically occupied by CubeSats
 - ... and far outside the protective shield of Earth's magnetosphere

Orbit

A representative orbit that BioSentinel might occupy

Radiation Environment

Total Ionizing Dose (Si) for Ambient Flux + single Solar Particle Event

BioSentinel Measurement Science Concept

- What: Yeast radiation biosensor measures DNA damage caused by space radiation: specifically, double strand breaks (DSBs)
 - As eukaryotes, yeast have repair mechanisms in common with human cells
- Why: Space radiation's unique spectrum cannot be reproduced on Earth
 - It includes a range of high-energy particles, each with its own energy distribution
 - It is omnidirectional, continuous, and of low flux
 - It poses a health risk for humans spending long durations beyond LEO
 - During a solar particle event (SPE), radiation flux can spike to 1000x nominal levels
- How: Before launch, engineered S. cerevisiae cells (brewer's yeast) are dried & placed in arrays of microwells
 - In space, a group of wells is rehydrated every few weeks
 - Yeast cells remain dormant until activated by a DSB
 - Gene repair initiates growth
 - One repaired DNA DSB can trigger exponential growth in 1 well
 - Growth & metabolic activity are monitored optically in all wells
 - Multiple microwells are always in "active sentinel mode"
 - Extra wells are activated in the event of an SPE

BioSentinel Science: Proof-of-Concept Lab Data

Yeast recombination assay and its response to gamma irradiation

Gamma ray dose (¹³⁷ Cs)	Recombination rate	Fold increase
No gamma	1.13 x 10 ⁻⁶	1
25Gy	5.02 x 10 ⁻⁶	4.4
50Gy	9.69 x 10 ⁻⁶	8.6
100Gy	1.43 x 10 ⁻⁵	12.7
181.2Gy	2.09 x 10 ⁻⁵	18.5

Spontaneous recombination rate: ~ 1 event in a million

Biology/Fluidic/Optical/Thermal Configuration

Biological Support & Measurement Systems

Requirements

- support biology in stasis and growth
- enable & perform measurement
- Configuration: 4U containment vessel
 - 1 atm internal pressure, low RH

3 ea. 96-well fluidics cards

- 12 "banks" of 8 wells per card (36 banks total)
 - ❖ 2 banks activated per month; 2 4 banks on "SPE standby"
- Sterilize by autoclaving
- Organisms fly in dry state in wells, rehydrate to activate
- Capability to refresh reagents in wells
- Low-permeability "semi-hermetic" fluidic cards & bags

Pumps, Valves, Tubing, Media

- external to cards; tubes and bags ~hermetic (to keep dried yeast dry)
- redundancy / isolation as container volume permits

Sensors & Measurement System

- Optical absorbance measurement per well
 - Dedicated 3-color optical system at each well
 - Measure dye absorbance & optical density (cell population)

- ➤ 0.5 1 °C uniformity, accuracy, stability
- multiple temp. sensors per card & throughout container
- Pressure & RH sensors in payload volume
- Radiation sensors
 - > 1 − 2 LET "spectrometer" chips & 2 integrating dosimeters
 - Frequent measurement & caching of results; selective downlink

Teledyne dosimeter

TimePix Chip

Typical TimePIX frame: 256x256x14 bits; 0.25 – 150 keV/um LET range.

BioSentinel

11

Environmental Constraints & Considerations

- Higher exposure to radiation than previous CubeSats* operating in LEO
 - Approximately 5 kRad total ionizing dose anticipated
 - Non-destructive single events (such as SEUs) motivate > 20
 MeV-cm² tolerance, destructive single events (SELs, SEBs)
 require > 37 MeV-cm² tolerance
- Distance from Earth eliminates use of GPS for position determination, magnetometers for attitude determination, torquer coils/rods for attitude control
- Solar radiation pressure will be largest disturbance torque

Subsystem Considerations

- Deployable solar panels required to generate sufficient power (> 30 W rating)
- Traditional CubeSat S-band/UHF radios insufficient at mission operating orbit (~ 1 AU)
 - X band preferred (up and down) for deep-space missions
- Propulsion required for both detumble and momentum management
- Very capable command & data handling system required
- Radiation tolerance is critical: component choice, recovery strategies, selective shielding

Candidate components under consideration for the BioSentinel mission

Estimated Data Rates

BioSentinel (Potential) Firsts and Challenges

- 1st NASA biology studies beyond LEO in 4 decades
 - Enabling comparison across multiple radiation & gravitation environments
- 1st 6U CubeSat to fly beyond LEO
 - Challenges for communications and attitude control
- 1st CubeSat to combine both active attitude control and a biology science payload
 - Payload includes autonomous measurement response to SPEs
- 1st CubeSat to combine both active attitude control and propulsion subsystems
- 1st CubeSat to integrate a third-party deployable solar array

The Team

- Management
 - Bob Hanel, Elwood Agasid, Debra Reiss-Bubenheim, Colleen Smith
- Science
 - Sharmila Bhattacharya, Macarena Parra, Tore Straume, Sergio Santa Maria, Diana Marina, Bob Bowman, Mark Ott, Sarah Castro, Greg Nelson, Troy Harkness
- Payload
 - Tony Ricco, Travis Boone, Ming Tan, Charlie Friedericks, Terry Lusby, Bobbie Gail Swan, Scott Wheeler, Susan Gavalas, Edward Semones
- Spacecraft and Bus
 - Brian Lewis, Matthew Sorgenfrei, Matthew Nehrenz, Marina Gandlin, Vanessa Kuroda, Ben Klamm, Craig Pires, Shang Wu, Abe Rademacher, Josh Benton

Affiliations

NASA Ames Research Center, NASA Johnson Space Center, Loma Linda Univ. Medical Center, University of Saskatchewan

Support

NASA Human Exploration and Operations Mission Directorate (HEOMD)

Advanced Exploration Systems Division – Jitendra Joshi, Jason Crusan Program Execs.

BACK-UP SLIDES

BioSentinel

A visualization of one possible formulation of a 6U spacecraft to be used for the BioSentinel mission

3 Distinct Missions

- Marshall Spaceflight Center,
 Jet Propulsion Laboratory, and
 Ames Research Center are
 supplying spacecraft
- MSFC NEOScout will inspect a NEO target, JPL LunarFlashlight will explore permanently shadowed craters on the moon, and Ames BioSentinel will characterize radiation environment

Building on Ames Heritage

- Ames has previously flown biologically-focused CubeSats with the GeneSat, PharmaSat, and O/OREOS missions
- Spacecraft make use of miniaturized life support systems to allow for growth of cells in microgravity environment
- BioSentinel will leverage this heritage to build three separate payloads:
 - Flight payload, module that can be integrated on station, and ground control

The PharmaSat 3U spacecraft, which carried a mircrowell and fluidics system similar to that which will be used in BioSentinel

A representative mode transition diagram for the BioSentinel mission

Avionics Challenges

- BioSentinel will require a command and data handling (C&DH) system that is much more capable than previously flown in CubeSat-form factor spacecraft
- Simultaneously would like fairly inexpensive development boards for prototyping and testing campaigns
- Radiation tolerance of high importance
 - Radiation-hardened or phase-change memory, watchdogs, multiple or "golden" software loads, etc
- Implications for GNC development strategy: auto-coding vs. hand-coding filers, control schemes, schedulers, etc

- Tip-off conditions from SLS are a major unknown
 - Initial body-fixed rates, potential need for a ΔV maneuver
- Tip-off conditions help to define GNC system needs, which will drive other subsystem budgets
- Detailed power budget assessment: ~30 W orbit-average power should allow for radio to be always on
 - As opposed to traditional CubeSat missions in which subsystem cycling sometimes required
- Need to define ground operations strategy
 - DSN likely the most feasible approach, issues with availability and cost
 - 34m likely acceptable for majority of mission life, larger array required at end of mission

MPCV Stage Adapter (MSA)

- Concept supports mass & volume for 12 bracket locations
- 11 locations support a dispenser & 6U (14 kg)
 Secondary Payload
- 1 Bracket location allocated to a sequencer

BioSentinel

Launch Through Secondary Payload Deployment

Communication Range to Earth

Location in Lunar Centered Space

Now that ICPS trajectory has been recreated, propagate forward in time:

Radiation Environment

Transponder Options

Radio	Mfr.	Band	Tx Power	D/L Modulatio n and FEC	D/L Rates*	Rangi ng	UL Modulati on	U/L Rate**	U/L Receive Sensitiv ity	TRL (Est.)	Heritage
IRIS	JPL	X/X	0.4 (2) W	BPSK, QPSK; RS&CC or Turbo	62.5 bps – 4 kbps	PRN	BPSK, FSK	1 kbps	-120 dBm	5	INSPIRE (NASA)
DESCREET /SM100	Inno- flight	S/X or X/X	1 W	BPSK, QPSK; RS&CC or Turbo	100 kbps - 4 kbps***	PRN	GMSK, FSK	1 kbps	-100 dBm	3	SENSE (USAF)
CSR_SDR- SS	Vulcan	S/S	2.5 (4) W	BPSK, QPSK; RS&CC or Turbo	100 bps – 4 kbps	PRN	BPSK, FSK	1 kbps	-126 dBm	5	SunJamme r (NASA)

- Momentum Management
 - No torque rods available
- Prop is typical solution
 - Tanks hard to accommodate
 - Hazardous fuels hard to accommodate
 - Need small impulse bits
 - Need low power for valve actuation
- Possible use of solar sailing
 - Alternate pointing direction to counter momentum buildup
- Almost all are fairly low TRL

Propulsion

Product	Company	Fuel	Perf	Thrust	Isp
PETA	Espace / MIT	Ionic Salt	~500 m/s	50 uN	3500 s
ChEMS	VACCO	Butane	34 Ns	55 mN	~70 s
BEVO-2	UT Austin	Butane	TBD	TBD	~70 s
MP-110	Aerojet	R-134a	~10 Ns	~30 mN	~70 s
u-PPT	Busek	Teflon	~250 – 500 m/s	25 – 40 uN	440 s

CFE/CFS Layered Architecture

- Each layer "hides" its implementation and technology details.
- Internals of a layer can be changed -- without affecting other layers' internals and components.
- Enables technology infusion and evolution.
- Doesn't dictate a product or vendor.
- Provides Middleware, OS and HW platform-independence.

BioSentinel

