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ABSTRACT 9 

Accurate and timely crop yield forecasts are critical for making informed agricultural 10 

policies and investments, as well as increasing market efficiency and stability. Earth 11 

observation data from space can contribute to agricultural monitoring, including crop yield 12 

assessment and forecasting. In this study, we present a new crop yield model based on the 13 

Difference Vegetation Index (DVI) extracted from Moderate Resolution Imaging 14 

Spectroradiometer (MODIS) data at 1km resolution and the un-mixing of DVI at coarse 15 

resolution to a pure wheat signal (100% of wheat within the pixel). The model was applied 16 

to estimate the national and subnational winter wheat yield in the United States and Ukraine 17 

from 2001 to 2017. The model at the subnational level shows very good performance for 18 

both countries with a coefficient of determination higher than 0.7 and a root mean square 19 

error (RMSE) of lower than 0.6 t/ha (15-18%). At the national level for the United States 20 

(US) and Ukraine the model provides a strong coefficient of determination of 0.77 and 21 

0.86, respectively, which demonstrates good performance at this scale. The model was also 22 

able to capture low winter wheat yields during years with extreme weather events, for 23 
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example 2002 in US and 2003 in Ukraine. The RMSE of the model for the US at the 24 

national scale is 0.16 t/ha (5.5%) while for Ukraine it is 0.27 t/ha (8.4%).  25 

 26 

1. INTRODUCTION 27 

Agriculture faces major challenges in this century. According to the Food and Agriculture 28 

Organization of the United Nations (FAO), global food production will need to increase by 29 

70% by 2050 in order to meet the growing global demand [1]. However, despite 30 

tremendous improvements in technology and crop yield potential, food production remains 31 

highly dependent on climate [2]. Since Earth Observation (EO) satellites became available, 32 

it was recognized that the technology held considerable promise for agricultural monitoring 33 

[3]. The NASA Large Area Crop Inventory Experiment (LACIE) and Agriculture and 34 

Resources Inventory Surveys Through Aerospace Remote Sensing (AgriSTARS) 35 

programs made significant advances in crop monitoring but were seriously constrained by 36 

satellite data availability. With recent advances in sensing technology, observation 37 

frequency, data products, computational analytics models and information technology, we 38 

are now better able to forecast and estimate crop production. Within-season crop yield 39 

assessment and forecasting is one of the major components of crop production monitoring. 40 

Timely and accurate information on crop yields at global, national, and regional scales is 41 

extremely important for informing a range of agricultural and food security decisions. For 42 

example, at the global and national level, timely information about crop development and 43 

production prospects in food exporting countries can help to enable actions to mitigate the 44 

effects of any food supply crisis (URL 1). 45 
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Observations from the NASA Earth Observing System (EOS) MODIS sensors have several 46 

of the key qualities needed for global crop yield monitoring such as global coverage at 47 

coarse spatial resolution (250m), an  excellent temporal resolution of two images every day 48 

that combined, minimize the data gaps associated with clouds and a suite of validated 49 

products. A good temporal resolution is required when working on agriculture applications 50 

given that the crop phenology and conditions (water supply, pests, environmental…) can 51 

change very quickly. Additionally, the MODIS dataset of 17+ years allows us to build a 52 

strong empirical model based on a large number of statistics and covering a wide range of 53 

crop conditions relative to other available satellite data. Generally, quantitative crop yield 54 

forecast regression models are based on EO-derived vegetation indices (e.g., maximum 55 

Normalized Difference Vegetation Index (NDVI) for the season [4] or temporal NDVI 56 

integration [5]–[9], senescence rate [10] or combining land surface temperature (LST) and 57 

NDVI [11]).  58 

However, the main disadvantage of coarse to moderate resolution sensors is the spatial 59 

resolution that often mixes in a given pixel, signals from different land cover types and 60 

crops. Stratifying a region into different crop types (commonly termed as crop masking) is 61 

an important step in developing EO-based yield models [12].  Such masks enable the 62 

isolation of the remotely sensed, crop-specific signal throughout the growing season, 63 

reducing the noise on the signal from other land cover or crop types. In the United States 64 

(US), the US Department of Agriculture (USDA) generates a yearly national Cropland 65 

Data Layer (CDL) since 2007 [13] and Canada provides yearly national Annual Crop 66 

Inventory Maps (ACIM) since 2009 [14]. However, these masks are provided at the end of 67 

the growing season and there are no available crop type masks for other countries. As a 68 
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consequence, generally EO-based crop yield models use static cropland or crop type masks. 69 

Next, we briefly describe some examples of studies found in the literature that use coarse 70 

resolution EO data to monitor crop yields, how they deal with the signal mixing and which 71 

masks they use as reference. 72 

[4] developed an empirical but generalized crop yield model based on MODIS Climate 73 

Modeling Grid (CMG, 0.05 degree spatial resolution) data and applied it to Kansas and 74 

Ukraine. The model, that was calibrated in Kansas, is based on the relationship between 75 

the NDVI value at the peak for the season and the final yield value, corrected for the 76 

average purity or the percentage of crop of the 5% purest pixels within the area studied. 77 

They used static crop type masks by aggregating the USDA CDL of 2007 to 0.05 degrees 78 

spatial resolution and developed their own mask for Ukraine. Later, [15] improved the 79 

temporal aspect of the model by including Growing Degree Days (GDD) information. The 80 

model was applied satisfactorily (errors lower than 10%) to monitor wheat yield at the 81 

national level over the US, Ukraine and China. It also showed  good performance when 82 

applied to the AVHRR Long Term Data Record (LTDR) [16]. However, this model was 83 

designed to work primarily at the national level.  84 

[17] developed an empirical model to forecast wheat yield over Europe. They used SPOT-85 

VEGETATION products of NDVI and Fraction of Absorbed Photosynthetically Active 86 

Radiation (FAPAR) at 1 km spatial resolution with errors ranging from 10-17% depending 87 

on the location. They divided Europe into different agro-climatic zones and aggregated 88 

those pixels using as a reference the arable land fraction from the Corine Land Cover 89 

(CLC, [18]) and estimated the weighted average of pixels with arable land fraction land 90 

higher than 50%. Later, [19] analyzed the correlation between EO indicators (FAPAR from 91 
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SPOT-VEGETATION at 1km spatial resolution) and wheat, barley and grain maize yields 92 

in Europe. In this case they divided Europe into different sub-national areas depending on 93 

the available statistics for each country. In this work, they also analyzed the weighted 94 

average of pixels within the 90th percentile arable lands fraction for each administrative 95 

unit, using the CLC as a reference. They found that crops growing under moderately or 96 

strongly water-limited conditions present a high inter-annual variability of leaf area 97 

development and senescence that influences the final yield, which is observable by EO 98 

systems. However, in agro-climatic areas where crop growth is not frequently water-99 

limited (e.g. irrigated crops), yield variations are explained by a complex interaction of 100 

different factors not necessarily related to the crop leaf area dynamics, and, therefore, 101 

weather indicators are needed to complement the FAPAR time series.  102 

[20]  assessed the feasibility and relative efficiency of using NDVI MODIS data to forecast 103 

winter wheat yield at oblast (sub-national) level in Ukraine. They spatially aggregated each 104 

oblast using a cropland map as a reference (Rainfed croplands class) that was extracted 105 

from the ESA GlobCover map at the 300 m resolution. They concluded that NDVI values 106 

2-3 months prior to harvest allowed reliable yield forecasts at the oblast level with RMSE 107 

ranging from 0.5 to 0.8 t/ha.   108 

[21] analyzed the correlation between the Evaporative Stress Index (ESI) from MODIS at 109 

1km spatial resolution and yield for major crops grown in Brazil. They aggregated those 110 

pixels classified as majority agricultural land using a land use map of Brazil, generated by 111 

the Brazilian Geographical and Statistical Institute (IBGE). Their results showed better 112 

correlation than other indices such as LAI for most crops and regions. Additionally, in the 113 
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case of soybeans, the yields showed earlier response (10 to 25 days) to extreme events than 114 

LAI.  115 

In this study, we present a new empirical model based on remote sensing data at coarse 116 

spatial resolution (MODIS aggregated to 1km). This model is based on the wheat signal 117 

un-mixing from the signal of other surfaces surrounding the wheat fields by using yearly 118 

crop type masks. Additionally, based on the analysis of the un-mixed time series of the 119 

wheat we use three different regressors that we calibrate for each administrative unit 120 

against the historical yield statistics. The main goal of developing this model is to make it 121 

sensitive to extreme weather events and applicable at the subnational level. This model is 122 

based on the Difference Vegetation Index (DVI) [22] that is estimated by the simple 123 

difference between surface reflectance in the red and the Near Infrared (NIR) spectral 124 

bands. The following aspects are incorporated into the proposed model: 125 

1. We use BRDF-corrected daily 1 km MODIS data derived from both Terra and Aqua 126 

satellites.  127 

2. We un-mix wheat surface reflectance’s to estimate the signal as if the MODIS 128 

pixels were 100% wheat. We use a satellite-derived amplitude of the peak DVI 129 

along with the time period that the peak remains (Length) and Evaporative Fraction 130 

(EF) to correlate with winter wheat yields. The EF is a parameter related to the 131 

evapotranspiration and is further detailed in section 3.2. 132 

In the next section (2.) we describe the study area and the data considered. Then, we 133 

describe the method proposed and how we derive the different input parameters (Section 134 

3.). Finally, we show the results both at the subnational and the national levels for the two 135 

countries considered (Section 4.). 136 
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 137 

2. STUDY	AREA	AND	DATA	DESCRIPTION	138 

2.1. Study area 139 

The study is carried out over the US and Ukraine from 2001 until 2017. The US is one of 140 

the main producers and exporters of wheat globally. In 2016 the US was the #1 wheat 141 

exporting country, shipping 14.8% of global wheat exports (URL 2). Wheat is produced in 142 

almost every state in the United States and winter wheat varieties dominate US production, 143 

representing between 70-80% of the total wheat production. The winter wheat is planted 144 

in the Fall and harvested during June-July. Generally, wheat is rain-fed and just 7% of the 145 

national production is irrigated. The main wheat class is Hard Red Winter Wheat, which is 146 

grown primarily in the Great Plains, with Kansas being the largest producing state.  147 

Ukraine is another critical player in the global wheat market. In 2016, Ukraine ranked #6 148 

by exporting 7.2% of global wheat exports (URL 2). Wheat is grown all across the country, 149 

although the central and southern regions are the key growing areas (Forest-Steppe and 150 

Steppe zones in Figure 1). About 95% of Ukraine’s wheat production is winter wheat, 151 

planted in the Fall and harvested during June-July of the following year. Generally, wheat 152 

is rain-fed and is not irrigated. Ukraine produces mostly Hard Red Winter Wheat.  153 

Tables 1 and 2 show the primary characteristics of the main climatic zones in the US and 154 

Ukraine where most of the winter wheat fields are planted and the average yields for each 155 

area using as a reference 2016. 156 

 157 

Table 1. Main climate zones in the US (classification from Vocke & Ali (2013) and yield values 158 

from NASS statistics). 159 
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Zone States Climate conditions Major Type of 

winter wheat 

Average yield 

(2016), t/ha 

North Central MT, ND, 

SD, MN 

Humid continental Hard Red 3.6 

Southern Plains OK, TX Temperate climate Hard Red 2.4 

Central Plains KS, CO Temperate climate Hard Red 3.5 

Northern Plains NE, WY Humid continental Hard Red 3.0 

Northwest WA, OR, ID Oceanic Soft White 5.0 

 160 

Table 2. Main climate zones in Ukraine. 161 

Zone Conditions Average yield 

(2016), t/ha 

Plane-Polissya Mixed forest zone in the north, 26% 

of the entire Ukrainian territory 

4.36 

Forest-Steppe Mainly cultivated area in the center 

(34%) 

4.88 

Steppe Intensive cultivated area (40%) 3.64 

 162 

 163 
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Figure 1. Agro-climatic zones of Ukraine 164 

 165 

 166 

2.2. Crop statistics on winter wheat 167 

In each country we run the wheat yield model for each Administrative Unit (AU). Thus, 168 

we work at different spatial scales depending on the data availability. In the case of the US, 169 

we work at the county level (average area of 258,000 ha), while in the case of Ukraine we 170 

work at the oblast level (average area of 2,414,000 ha). 171 

For the US, we use the official archive of county-level statistics on yield, area harvested, 172 

and production that are available from the USDA National Agricultural Statistics Service 173 

(NASS) Quick Stats database (http://www.nass.usda.gov/Quick_Stats/). The NASS crop 174 

statistics are based on data obtained from multiple frame-based sample surveys of farm 175 

operators, objective yield surveys, agribusinesses, shippers, processors and commercial 176 

storage firms. 177 

For Ukraine, oblast-level crop statistics are obtained from the State Statistics Service of 178 

Ukraine (SSS) (http://www.ukrstat.gov.ua) for winter wheat area harvested and yield. 179 

These official statistics are based on farm surveys collected from all the agricultural 180 

enterprises (large-scale farms that produce commodities exclusively for sale).  181 

 182 

2.3. Crop type masks 183 

For the US, a national winter wheat mask is available from the CDL produced by NASS 184 

from 2008 to 2016. The CDL is a rasterized land cover map using field level training data 185 

from extensive ground surveys, farmer reports provided to the US Farm Service Agency 186 
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(FSA), and remotely sensed data from Landsat Thematic Mapper (TM), Landsat Enhanced 187 

Thematic Mapper (ETM+) and Advanced Wide Field Sensor (AWiFS). These data are 188 

used in a decision tree classifier in order to produce a land cover classification that 189 

distinguishes between different crop types, including winter wheat [13], [24]. In this study, 190 

yearly CDL layers are used to identify winter wheat growing areas by estimating the 191 

percentage of 30m CDL pixels within each MODIS 1km pixel. At 1km spatial resolution 192 

MODIS pixels mix the signal from wheat with the signal from other surfaces surrounding 193 

the wheat fields. In order to isolate the wheat signal through the un-mixing process (see 194 

section 3.3), we used the CDL masks to identify not only the wheat but also the other 195 

surfaces and how much percentage of each class is observed by each pixel. Therefore, 196 

looking at the main land cover classes surrounding the wheat fields in the US, we consider 197 

a total of eight different cover classes that are included in the un-mixing method: winter 198 

wheat, spring wheat, corn, soybean, alfalfa, potato, grassland and forest. Before 2008 the 199 

CDL was not produced at the national scale and has gaps for some states. To generate 200 

yearly winter wheat masks for US from 2001 to 2007 and for Ukraine for the 2001–2016 201 

period, we used MODIS-derived 8-day composited NDVI values at 250 m spatial 202 

resolution [25] and an automatic phenology-based approach for winter wheat mapping 203 

[26]. This approach showed an accuracy of >90% for US and Ukraine, and good 204 

correspondence to official statistics with an average coefficient of determination >0.85.  205 

Additionally for Ukraine, we extracted static grassland and forest masks from the 30 m 206 

land cover map for Ukraine for 2010 [27], [28]. The reported classification accuracies are 207 

97% and 90% for forest and grassland, respectively. Note that these classes are just 208 

considered when they are surrounding the wheat fields, that is, when their signal is mixed 209 
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with wheat in order to un-mix it. Thus, by using static masks of grassland and forests in 210 

Ukraine we are assuming that these surfaces surrounding the wheat fields have not changed 211 

considerably during the time period analyzed. 212 

 213 

2.4. MODIS surface reflectance time-series 214 

This study is based on MODIS daily surface reflectance Collection 6 data 215 

(M{OY}D09GQ) distributed by the Land Processes Distributed Active Archive Center (LP 216 

DAAC, https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table) which 217 

are gridded in the sinusoidal projection at 250m resolution. Additionally, we used the 218 

product M{OY}D09GA to extract the geometry of observation/illumination of each image. 219 

Since the nominal 250 m MODIS resolution decreases for the off-nadir observations and 220 

due to inaccurate registration [29], we re-scaled the 250m surface reflectance to 1km spatial 221 

resolution to mitigate that effect by aggregating 4x4 pixels. 222 

 223 

3. METHODS	224 

3.1. General workflow 225 

The diagram in Figure 2 shows the workflow followed in this study. The model is based 226 

on three different regressors (blue boxes in the diagram): the amplitude of the peak, the 227 

time period that the peak remains for and the average of the Evaporative Fraction (EF) 228 

during the thirty-day period following the peak. In order to determine these parameters, the 229 

inputs needed (yellow boxes in the diagram) are the MODIS Surface Reflectance product, 230 

the MODIS Land Surface Temperature product, the CDL crop mask in the US and official 231 
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statistics for model calibration and validation. In the following subsections we describe 232 

more detail about the methods (green boxes in the diagram). 233 

 234 

 235 

 236 

Figure 2. The workflow followed in this study. 237 

 238 

3.2. Surface	reflectance	normalization	and	albedo	estimation	239 
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The wide swath MODIS sensor allows for near global coverage of the Earth every day. 240 

However, it has a 16-day repeat cycle, which means that every day the geometry of 241 

observation is different and can include View Zenith Angles (θv) of up to 65 degrees. As a 242 

consequence, the surface reflectance that is defined for a given geometry of observation-243 

illumination has different values every day. When working with normalized vegetation 244 

indices such as the NDVI, the geometry effects are minimized, but that is not the case when 245 

working with non-normalized parameters such as the DVI. In order to normalize the BRDF 246 

effects on the surface reflectance, we used the VJB method [30], [31]. This method uses 247 

longer compositing periods (5 years in [30]) than the MCD43 product (16 days) [32] which 248 

reduces the noise in the normalized reflectance time series [29]. In this study, we derive 249 

the nadir BRDF parameters at 1km spatial resolution using the most recent five years (2012 250 

to 2016). By using the daily surface reflectance (from both Aqua and Terra) and its angular 251 

conditions during the five-year period considered, we derive the variables that define the 252 

BRDF shape (V and R in Eq. 1) using the approach used by [31]. Then we apply Eq 1 for 253 

deriving the normalized surface reflectance (ρN) in MODIS band 1 and 2 (1) and we also 254 

use the BRDF coefficients for estimating the surface albedo.  255 

 256 

   (1) 257 

 258 

where ρ is the directional surface reflectance, θs is the sun zenith angle, θv is the view zenith 259 

angle, ϕ is the relative azimuth angle, F1 is the volume scattering kernel, based on the Ross-260 

Thick function derived by [33] but corrected for the Hot-Spot process proposed by [34], F2 261 



 14 

is the geometric kernel, based on the Li-sparse model [35] but considering the reciprocal 262 

form given by [36], V represents the volume BRDF parameter since it is linked to the 263 

Volume kernel and R represents the roughness BRDF parameter since it is linked to the 264 

geometric kernel. These parameters (V and R) represent the shape of the BRDF. 265 

In order to estimate the surface albedo, that is needed to estimate the EF, we follow the 266 

same methodology to derive the surface albedo as the official MCD43 MODIS product [32]. 267 

Downwelling flux may be written as the sum of a direct component and a diffuse component. 268 

Black-sky albedo (αbs) or directional-hemispherical reflectance (DHR) is defined as albedo in 269 

the absence of a diffuse component and is a function of solar zenith angle. White-sky albedo 270 

(αws) or bihemispherical reflectance is defined as albedo in the absence of a direct component 271 

when the diffuse component is isotropic. It is independent of the geometry of illumination-272 

observation. Therefore, the albedo can be written by integrals of the BRDF model through the 273 

black-sky albedo and the white-sky albedo.  274 

                     (2) 275 

                     (3) 276 

where fk(l) are the BRDF model parameters and 277 

                 (4) 
278 

                   (5) 
279 
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where kk(θi, θv, f) are the BRDF model functions of the observation geometry (F1 and F2 in 280 

equation (1)). 281 

The albedo, α(θ,λ), under actual atmospheric conditions can also be modeled quite accurately 282 

as an interpolation between the black-sky (direct beam) albedo and white-sky (completely 283 

diffuse) albedo as a function of the fraction of diffuse skylight S(θ,τ(λ)), which, in turn, is a 284 

function of optical depth τ [37], [38]. 285 

     (6) 286 

We simulate the diffuse skylight with 6S [39] using as input the MODIS Aerosol Optical 287 

Thickness (AOT) at 550nm product, which is included in the Climate Modeling Grid 288 

(CMG) product.  289 

 290 

3.3. Un-mixing	of	the	wheat	signal	291 

When working with medium to coarse spatial resolution sensors, the signal retrieved by 292 

each pixel generally mixes different land cover classes. Therefore, crop yield modeling 293 

requires availability of crop-specific masks, so that only the remotely sensed signal from 294 

the crops in question will be considered. In order to work with the purest wheat signal 295 

possible, in this work we present a method based on the un-mixing of the signal at 100% 296 

wheat purity. For each AU and for a given date, the total DVI signal from each pixel, i, can 297 

be written as the sum of the DVI signal from the wheat (DVIwheat) multiplied by the 298 

percentage of wheat within the pixel or wheat purity (Wpct) and the DVI from other 299 

surfaces within the pixel (DVIothers) multiplied by the remaining percentage (1- Wpct) (1).  300 

𝐷𝑉𝐼$ = 𝐷𝑉𝐼$,'()*+ ∙ 𝑊𝑝𝑐𝑡$ + 𝐷𝑉𝐼$,2+()34 ∙ (1 −𝑊𝑝𝑐𝑡$)  (7) 301 
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Which has the structure of a linear regression function and can be solved with the Ordinary 302 

Least Squares (OLS) method. Figure 3 shows an example of the linear regression between 303 

the DVIi and the wheat purity, Wpcti, (black dots) for the Day of the Year (DOY) 79 of 304 

2016 for Harper County (Kansas).  305 

 306 

Figure 3. Linear regression of the DVIi versus the wheat purity (Wpcti) through the Harper County 307 

for DOY 79 of 2016. 308 

 309 
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In the case of the US, where the CDL product provides masks for other crops, we can 310 

take advantage of such information to improve the un-mixing of the signal. As described 311 

in the previous section, after studying the main classes that generally surround the US 312 

wheat fields, we consider a total of 8 different classes plus the “others” contribution. The 313 

eight classes considered are: winter wheat (#1), spring wheat (#2), corn (#3), soybean (#4), 314 

alfalfa (#5), potato (#6), grassland (#7) and forest (#8) with crop purities (percentage of a 315 

given crop area within the pixel) Cpct (corn). Then, equation 7 is written as: 316 

 317 

𝐷𝑉𝐼$ = ∑ 𝐷𝑉𝐼$,: ∙ 𝑌𝑝𝑐𝑡$<
:=> + 𝐷𝑉𝐼$,2+()34 ∙ (1 − ∑ 𝑌𝑝𝑐𝑡$<

:=> )  (8) 318 

 319 

where Y is the class number, Ypcti is the purity of class Y (or percentage of class Y area 320 

within the pixel). This equation also has the structure of a linear regression function. 321 

This un-mixing method is applied to each AU and day, isolating in each case the DVI signal 322 

coming from wheat. Based on the time series of the DVIwheat, we estimate the amplitude of 323 

the peak value of this variable and the time period that this peak remains (hereafter referred 324 

as length), defined as the number of days when the DVIwheat is higher than 80% of the 325 

amplitude value. 326 

 327 

3.4. 	Evaporative	Fraction	estimation	328 

Any change in the water resources of the crop takes some time to show an effect on the 329 

biomass, that is directly linked to the vegetation indices. Therefore, any water stress 330 

condition happening during or after the peak might not be accounted for when just using 331 

the amplitude and length. However, these changes can be detected earlier when using 332 
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thermal indices [21]. One of the key factors that drive the land surface energy process is 333 

evapotranspiration (ET). ET is defined as the flux of water evaporated at the earth-334 

atmosphere interface (from soil, water bodies and interception) and transpired by 335 

vegetation through stomata in their leaves as a consequence of the photosynthetic 336 

processes. There are several ET models and products [40]–[46]. However, they generally 337 

rely on the estimation of several parameters such as net radiation, the sensible and latent 338 

heat flux and the ground flux. In this study, we examine the use of the Evaporative Fraction 339 

(EF) as one of the inputs to the proposed yield model. The EF describes the ratio of 340 

evapotranspiration to available total energy (equation 9).  341 

   (9) 342 

where LET is the latent heat flux, H is the sensible heat flux, Rn is the net radiation and G 343 

is the soil heat flux. In this study, EF is derived based on the Simplified Surface Energy 344 

Balance Index (S-SEBI) method developed by [44]. The surface temperature and 345 

reflectance of areas with constant atmospheric forcing are correlated and the relationships 346 

can be applied to determine the effective land surface properties [40], [47]. The S-SEBI 347 

method uses as reference the LST vs albedo diagrams to determine the dry and the wet 348 

conditions of the area considered. The dry conditions are defined by a baseline 349 

representative of the maximum sensible heat with a reflectance dependent maximum 350 

temperature. Meanwhile, the wet conditions are defined by a baseline of the maximum 351 

potential evapotranspiration with a reflectance dependent minimum temperature, hence the 352 

sensible and latent heat fluxes are partitioned according to the actual surface temperature. 353 

The assumption of this method is that global radiation and atmospheric conditions tend to 354 
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be constant and that there are a sufficient number of wet and dry pixels to determine and 355 

right wet and dry edge [44]. A detailed analysis on these baselines estimation uncertainty 356 

can be found in [48]. The EF is derived using an approximation according to [44], [49], 357 

[50]:   358 

 359 

𝐸𝐹 = ABCAD
ABCAEF

= *BGHIBCAD
(*BC*EF)GH(IBCIEF)

    (10) 360 

 361 

where TH is land surface temperature for dry pixels; TLE is land surface temperature for wet 362 

pixels; Ts is land surface temperature; α is surface albedo; aH, aLE are the slopes of the line 363 

of, respectively, the high and low temperatures as a function of surface albebo; bH, bLE are 364 

the intercepts of the line of, respectively, the high and low temperatures as a function of 365 

surface albedo. 366 

In this study, the LST is extracted from the official MODIS (MYD11) LST product [51]. 367 

Note that the EF is estimated using the Aqua satellite whose overpass time is during the 368 

afternoon, when higher water stress can be detected. Section 3.2 describes the method 369 

followed to derive the surface albedo. We derive the LST vs albedo diagram parameters’ 370 

for each day at the state level in the US and at the oblast level for Ukraine. Note that in the 371 

case of the US, the LST vs albedo diagrams are built at state level (instead of county level) 372 

to ensure having enough pixels with wide variability of moisture conditions. Figure 4 373 

shows an example of the LST-albedo diagram in Kansas. Then, for each pixel, Eq. 10 is 374 

implemented, providing a pixel-based EF estimation. Finally, at the county level we apply 375 

the same un-mixing procedure as the DVI in order to isolate the EF for the wheat. This 376 

parameter is considered in the model by estimating its average during the 30 days after the 377 
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seasonal peak (grain filling period). We consider this period to account for any water stress 378 

conditions happening during or after the peak and that will have a negative impact on the 379 

final yield [52], [53]. 380 

 381 

 382 

Figure 4. Example of a LST-albedo diagram in Kansas on April 15th, 2016. The red lines 383 

represent the maximum sensible heat (dry boundary, top line) and the maximum potential 384 

evapotranspiration (wet boundary, bottom line). Red dots represent the data considered to 385 

derive the red lines. 386 

 387 

3.5. Evaluation	of	the	un-mixing	method	388 
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We test the performance of the un-mixing of the wheat signal by applying the un-mixing 389 

method to all Landsat 8 OLI cloud-free data available from 2013 to 2016 in three different 390 

counties in the US: Harper (Kansas, 17 images), Walla Walla (Washington, 23 images) 391 

and Bingham (Idaho, 14 images). The validation of the method is just focused on Landsat 392 

data to avoid any impact of spectral adjustment between two sensors or any error associated 393 

with angular effects correction. Thus, first Landsat data are transformed to MODIS-like 394 

images by upscaling the spatial resolution of Landsat to 1km and re-projecting them to the 395 

sinusoidal projection. Then, using the same CDL crop masks that we use for MODIS, we 396 

apply the un-mixing method. Finally, we validate the un-mixing of the wheat signal against 397 

the average throughout the county of all the 100% purity wheat pixels at the original 398 

Landsat spatial resolution.  399 

 400 

3.6. Calibration	of	the	yield	model	401 

For each AU, a separate linear regression was built with different combinations of 402 

regressors (Equations 11-16). 403 

𝑦𝑖𝑒𝑙𝑑 = 𝑎>P + 𝑎>> ∙ 𝐴     (11) 404 

𝑦𝑖𝑒𝑙𝑑 = 𝑎RP + 𝑎R> ∙ 𝐿     (12) 405 

𝑦𝑖𝑒𝑙𝑑 = 𝑎TP + 𝑎T> ∙ 𝐸𝐹     (13) 406 

𝑦𝑖𝑒𝑙𝑑 = 𝑎UP + 𝑎U> ∙ 𝐴 + 𝑎UR ∙ 𝐿    (14) 407 

𝑦𝑖𝑒𝑙𝑑 = 𝑎VP + 𝑎V> ∙ 𝐴 + 𝑎VR ∙ 𝐸𝐹    (15) 408 

𝑦𝑖𝑒𝑙𝑑 = 𝑎WP + 𝑎W> ∙ 𝐴 + 𝑎WR ∙ 𝐿 + 𝑎WT ∙ 𝐸𝐹    (16) 409 

A p-value for each regressor was calculated which provides a test of the null hypothesis 410 

that a coefficient for this regressor is equal to zero, i.e. the regressor has no effect on the 411 
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dependent variable (crop yield in our case). A small p-value indicates that the 412 

null hypothesis can be rejected, meaning that there is a statistically significant relationship 413 

between the regressor and dependent variable. We used this statistic index to decide in each 414 

AU which variables were significant (by using a threshold of 0.2 in p-value) and which 415 

equation to consider (lowest p-value for each regressor).  416 

There are several winter wheat varieties planted in the US (over 30,000) distributed over 417 

different regions with diverse climates, soils, treated with different fertilizers and 418 

susceptible to different diseases. Thus, specific modelling of such characteristics would be 419 

complex, data demanding, and leading to highly parametrized models. Therefore, our 420 

approach was to empirically calibrate the model at the county level assuming that 421 

homogeneity in the above-mentioned parameters. Additionally, given that we use 1km 422 

spatial resolution data whose wheat signal is un-mixed, we need to ensure that the wheat 423 

purity is sufficient to invert the model. At low wheat purities, the wheat signal is low and 424 

it is competing with the signals from other surfaces. In these circumstances, the un-mixing 425 

can lead to high errors. Therefore, the model is applied to every county with wheat purity 426 

values higher than 40%. After testing other purities, this 40% threshold showed the best 427 

performance or balance between number of counties considered (using a higher threshold 428 

reduces the number of counties where the model can be applied) and noise in the 429 

extrapolated data (when using lower thresholds). During the calibration process, none of 430 

the three regressors considered in the proposed model (amplitude, length and EF) was able 431 

to capture the late frost that mostly affected Kansas and Oklahoma in 2007. This late frost 432 

happened during early April and is the only event with these characteristics that occurred 433 

during the 17 years analyzed. As a consequence, there are not enough data to study the 434 
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inclusion of another variable in the model capable to respond to these extreme conditions. 435 

Following the approach of [4], every county in these two states during 2007 is excluded 436 

from the calibration and the validation processes. 437 

In Ukraine we follow the same methodology as in the US, by calibrating the crop yield 438 

model individually each AU (oblast). 439 

 440 

3.7. Validation	of	the	yield	model	441 

Each country is validated both at national and subnational level from 2001 to 2017. Note 442 

that the period 2001 to 2016 is used both for calibration and validation, while 2017 is just 443 

used for validation.  444 

For the Ukraine, the model can be applied to every oblast. Therefore, the national number 445 

match the addition of the oblast-level statistics. However, this is not the case for the US, 446 

where there are some counties excluded from the study because the maximum purity of the 447 

wheat signal is lower than 40% in any 1 km pixel due to small field size. Additionally, in 448 

the official county-level statistics there are some counties with no statistics or some 449 

temporal gaps in other counties whose data is not publicly available due to privacy issues 450 

but are accounted at national level.  451 

 452 

4. RESULTS 453 

4.1. Evaluation of the un-mixing method 454 

Figure 5 shows the evaluation of the un-mixing method using Landsat 8 as a reference. The 455 

results show a good agreement of the extrapolated signal with a high coefficient of 456 

determination (>0.96) and errors of around 0.02. As an example of the impact and utility 457 
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of the un-mixing approach, Figure 6 plots the average of every Landsat 1km pixel with any 458 

wheat against the same x-axis as in Figure 5. Given that these coarse resolution pixels mix 459 

different surfaces’ DVI, this variable does not show any variability throughout the year not 460 

allowing any phenological analysis. 461 

 462 

 463 

  



 25 

 

Figure 5. Evaluation of the un-mixing method using Landsat 8 as a reference for Harper County, 464 

Kansas (top left); Walla Walla County, Washington (top right); and Bingham County, Idaho 465 

(bottom). The error bars represent the standard deviation of the wheat pixels’ average at the Landsat 466 

spatial resolution. 467 

 468 
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Figure 6. Example of the impact of not using the un-mixing method for Harper County, Kansas. 469 

The error bars represent the standard deviation of the wheat pixels’ average at the Landsat spatial 470 

resolution.  471 

 472 

4.2. Calibration	of	the	yield	model		473 

4.2.1. The	US	474 

Figure 7 shows the p-values associated with each input statistical significance in the 475 

calibration equations of the model and the determination coefficient for each county.  476 

 477 

 478 

a) 479 

 480 

b) 481 
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 482 

c) 483 

 484 

d) 485 

Figure 7. Geographical distribution of p-values derived for a) the amplitude of the peak, b) 486 

length of the peak and c) EF. Corresponding coefficients of determination for each county 487 

is shown in subplot (d).  488 

 489 

The amplitude is used in most counties and shows generally p-values lower than 0.05 in 490 

the most important producing counties along the Great Plains, the North-West, North 491 

Central regions and Michigan. However, it shows values higher than 0.10 in California. 492 

The length is the second most used regressor and generally shows values lower than 0.05 493 

in Kansas and South Dakota. Finally, the EF is the least used regressor and it is mostly 494 
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used in the Great Plains area where most counties show low p-values. The coefficient of 495 

determination shows that the model works very well (r2>0.6) along the Great Plains and 496 

some norther counties. However, the coefficient of determination is low in California (2% 497 

of national production) and the counties around the Mississippi (3% of national 498 

production). California winter wheat is one of the few states that plants most classes of 499 

winter wheat such as hard red, hard white, soft white or durum. This heterogeneity of 500 

classes maybe the reason of the low coefficients of determination in this area. Regarding 501 

Mississippi and Arkansas counties, they generally show low purities (slightly above 40%). 502 

This impacts the accuracy of the un-mixing given that the wheat signal is competing with 503 

other surfaces whose signal will be stronger. 504 

 505 

4.2.2. Ukraine	506 

Figure 8 shows the p-value of each regressor considered in the model and the determination 507 

coefficient in each oblast.   508 

 509 

 

a) 

 

b) 
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c) 

 

d) 

Figure 8. Geographical distribution of p-values derived for a) the amplitude of the peak, b) 510 

the length of the peak and c) EF. Corresponding coefficients of determination for each 511 

oblast is shown in subplot (d). 512 

 513 

The amplitude shows really good values (<0.05) across the country and just shows p-values 514 

higher than 0.05 in four oblasts. Both the length and the EF are barely used in Ukraine. 515 

The length shows low p-values (<0.05) in two oblasts (located in the center and north 516 

respectively) while the other oblasts show higher p-values (>0.10). Average EF p-values 517 

are generally relatively high (>0.10). The coefficient of determination shows very good 518 

correlation (r2>0.4) for most oblasts, especially in the southern area where most of the 519 

wheat production is located.  520 

 521 

4.3. Validation of the yield model 522 

4.3.1. The US 523 

Figure 9 (top left) shows the county level calibration validation of the model in the US. 524 

Each point in the plot represents a given county and a given year during the time-period 525 

from 2001 to 2016. The statistics show a high correlation with a coefficient of 526 

determination of 0.86 and an error of 0.4 t/ha (15.36%). Figure 9 (top right) shows the 527 
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county level calibration validation excluding Kansas and Oklahoma in 2007. Though the 528 

global statistics barely improve (14.52%), it removes from the plot the overestimation of 529 

the low yields caused by the late frost that the model does not capture. Validation of the 530 

model using data from the year of 2017 (the only year not used in the calibration) shows 531 

performance consistent with the one derived for 2001 to 2016 validation with an error of 532 

15.67% and coefficient of determination of 0.86. These results show that the model does 533 

not exhibit over-fitting. Figure 9 (bottom left) shows the county level leave-one-out cross-534 

validation (LOOCV), in which iteratively a year is retained for validation, while other years 535 

are used for model’s calibration. Analogously, Figure 9 (bottom left) shows the county 536 

level LOOCV excluding Kansas and Oklahoma in 2007. Figure 10 (left) shows the 537 

evaluation of the model by adding up all the county-level statistics where we can apply the 538 

model (all data in Figure 9 left) to the national scale and comparing it to the addition of the 539 

official county-level statistics of the same counties considered in the model to national-540 

level. Note that at the national level we do not analyze the performance of 2017 separately. 541 

The model shows good results for every year except 2007, when the yield is overestimated. 542 

Figure 10 (right) shows the national validation excluding Kansas and Oklahoma for 2007 543 

since the model is not able to capture the late frost, which improves the validation statistics.  544 

 545 



 31 

  

  

 546 

Figure 9. County level validation in the US (top) from 2001 to 2016 (left) and excluding 547 

Kansas and Oklahoma in 2007 (right). Each black dot represents a county and a year from 548 

2001 to 2016 while each red dot represents a county in 2017. Bottom: LOOCV at county 549 

scale from 2001 to 2017 (left) and excluding Kansas and Oklahoma in 2007 (right). 550 

 551 
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 552 

Figure 10. National level aggregation of the county level statistics (left). Excluding 553 

Kansas and Oklahoma in 2007 (right). 2017 is the black triangle. 554 

 555 

4.3.2. Ukraine 556 

Figure 11 (left) shows the oblast level validation of the model. The statistics show very 557 

similar numbers to the subnational validation in the US, with a little lower coefficient of 558 

determination of 0.73 but a very similar error (to the US) of 0.48 t/ha (14%). Note that in 559 

Ukraine there are much fewer oblasts than there are counties in the US and they present a 560 

lower variability in yield as compared to the US (the yield at oblast level can get up to 6 561 

t/ha while in the US counties it can get up to 10 t/ha). Validation of the model using data 562 

from the year of 2017 (the only year not used in the calibration) shows a general tendency 563 

of underestimation but performance statistics are similar with the ones derived for 2001 to 564 

2016 validation. Figure 11 (right) shows the oblast level LOOCV. Figure 12 shows the 565 

national validation. The results show an excellent coefficient of determination of 0.85, 566 
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being able to capture the very low yields in 2003. As in the case of the oblast validation, 567 

2017 is underestimated by the model. The RMSE in Ukraine at the national level is 0.27 568 

t/ha (8%). 569 

 570 

  

 571 

Figure 11. Oblast level calibration validation in Ukraine (left). Each black dot represents 572 

an oblast and a year from 2001 to 2016 while each red dot represents an oblast in 2017. 573 

LOOCV at oblast level in Ukraine (right). 574 
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 575 

Figure 12. National level validation in Ukraine. 2017 is the black triangle. 576 

 577 

5. DISCUSSION  578 

Most crop yield models based on remote sensing coarse resolution data use static cropland 579 

or crop type masks to aggregate spatially the remotely sensed variables as discussed in the 580 

introduction section. When working with static crop type masks, coarsening the spatial 581 

resolution of the EO timeseries data can result in a constant per-pixel proportion over 582 

multiple seasons [54]. Besides, cropland static masks are more stable but do not isolate 583 

different crops. The studies working on these masks generally look at a special time of the 584 

growing season when the crop considered shows a particular pattern of the variable studied 585 

that allows its isolation from the other crops in the cropland mask. However, for summer 586 
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crops, whose phenology is very similar the mix of different crops can lead to wrong 587 

conclusions. In this work, we have developed a model to un-mix the wheat signal from 588 

other surfaces surrounding the fields by using yearly crop type masks. This method 589 

assumes that the DVIwheat and the DVIothers remain constant for an AU for a given date. 590 

Therefore, we assume that within the AU the climate is similar, there are no significant 591 

elevation differences and the vegetation types in the area are in the same phenological 592 

stage. This is a big assumption specially for AUs with very different varieties of wheat and 593 

treatments. However, the model works well at sub-national to national scale. Every model 594 

has a trade-off and we acknowledge this limitation of coarse spatial resolution data. This 595 

will be addressed by using moderate to high spatial resolution data, that will allow the yield 596 

estimation at field level. However, the trade-off of such sensors (i.e. Landsat, that dates 597 

back to the 70s) is the low temporal resolution with 16 days revisiting time during the 598 

historical time series. With the availability of Sentinel 2 data from 2015 and its combination 599 

with Landsat [55] will address this gap but by now we can use coarse resolution time series 600 

to train the model and learn from it. Looking at the 100% wheat pixels average at the 601 

Landsat level for the three different counties considered, the maximum DVI standard 602 

deviation is 0.06 which means an error of 10-15% at the peak. Nevertheless, when 603 

evaluating the method with Landsat data, the results show good agreement compared to 604 

the county 30m wheat pixels average with good correlation and errors of 0.02. One 605 

limitation of the method, related to the limitation of working with coarse to moderate 606 

spatial resolution data, is that it can only be applied when there is at least one pixel with 607 

wheat purity higher than 40% within the AU. As discussed above, by establishing this 608 
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threshold, we ensure that there is enough of a wheat signal to be un-mixed from the other 609 

surfaces.  610 

Our model is based on the study of different patterns of the wheat DVI evolution through 611 

the growing season. In the introduction, we described some yield models that use other 612 

vegetation indexes such as the NDVI as a reference. However, the MODIS Surface 613 

Reflectance product is now well established [56] and widely used by the science 614 

community as a reference. In this context and given the limitations of using the NDVI on 615 

dense vegetation (e.g., [57]–[63]), much simpler vegetation indices that were originally 616 

discarded as they did not minimize for atmospheric or BRDF effects, can now be used. 617 

This is the case of the DVI that we use in this work. The good results obtained using this 618 

index demonstrate that it is well correlated to crop yields and is responsive to high yield 619 

values. As an example of the performance of this index compared to the NDVI, Figure 14 620 

shows the subnational (top) and national (bottom) validation just using the peak value of 621 

the DVI (left) compared to NDVI (right). At subnational level (Figure 14 top), the 622 

difference during the calibration period (2001-2016) between using DVI and NDVI is not 623 

significant given the high amount of data included in the statistics. However, the validation 624 

of a single year (2017) using the peak DVI reduces the RMSE 0.1 t/ha (3%). The difference 625 

is also noticed at national level (Figure 14 bottom), where the peak DVI shows better results 626 

than the peak NDVI. Note that in this work we choose the DVI for simplicity, but other 627 

indexes such as the Enhanced Vegetation Index (EVI) or the Leaf Area Index (LAI) may 628 

provide equivalent results.  629 



 37 

  

  

Figure 13. US county level (top) and national level (bottom) validation when using just the 630 

peak DVI (left) and peak NDVI (right). 631 

 632 

Besides the un-mixing method and the use of the DVI, the main hypothesis of the model is 633 

the correlation of the yield with the DVI seasonal peak amplitude, the time that the peak 634 

remains and the average EF 30 days after the peak. The three regressors proposed are 635 



 38 

focused on the reproduction stage of the wheat (DVI amplitude and length) and the grain 636 

filling process (EF 30-days average). In the introduction, we referenced some EO-based 637 

yield models whose main input variables might be the NDVI peak, its temporal integration, 638 

its senescence rate, combining the NDVI with the LST or using other indexes such as 639 

FAPAR or ESI. While the amplitude of the peak has been used in other studies (but using 640 

NDVI instead), the length of the peak has not been analyzed previously (to our best 641 

knowledge). Though the peak definition is a singular point, in some cases, the peak can 642 

last a few days becoming a short plateau. During this time period, the plant remains in the 643 

same phenological stage. Looking at the yield statistics we noticed that the yield is 644 

positively correlated with the length of the peak. This is especially the case of 2016 (highest 645 

production year) in some counties of Kansas, where the amplitude is very similar to other 646 

years in the dataset while the length made a difference. The 30-days average EF, as 647 

mentioned in the methods section, accounts for any water stress condition that happen 648 

during and after the peak. Regarding the statistical significance of each regressor, the 649 

amplitude of the DVI seasonal peak shows the lowest p-values of the three regressors both 650 

in the US and Ukraine (Figures 5 and 6). Meanwhile, the other two regressors remain 651 

significant in some regions of the US as discussed in the results section. However, in 652 

Ukraine the length and the EF show less statistical significance throughout the different 653 

oblasts. Besides, Table 4 shows the number of US counties where each calibration equation 654 

is used. The most used equations are 11 (just using the amplitude) and 14 (amplitude and 655 

length) that account for over 70% of the counties. However, the equations that include the 656 

EF (13, 15 and 16) represent about the 25%. It is also interesting that the three regressors 657 

are just considered in 14.2% of counties.  658 
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 659 

Table 4. Number of US counties where each equation is used.  660 

Equation Number of counties % 

11 167 38.8 

12 27 6.3 

13 10 2.3 

14 147 34.2 

15 18 4.2 

16 61 14.2 

 661 

 662 

When applying the method to the US, the proposed model was able to capture most of the 663 

extreme events that occurred during the MODIS era. Figure 14 shows the county level 664 

validation of two example of extreme events in the US. In 2012, the combination of hot 665 

weather and dry conditions during May affected the final yield specially in the Great Plains 666 

(Figure 14 left). Besides, during mid-May 2015 Texas and Oklahoma were hit by a flood 667 

event that damaged the wheat fields (Figure 14 right).  668 

 669 
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Figure 14. Examples of the model performance in areas hit by drought (left) and flooding 670 

(right).  671 

 672 

The model was also able to capture high yields, such as 2016, when the rains in late April 673 

and mild temperatures in May led to the highest historical yields in the US. However, the 674 

model is currently not able to capture late frosts such as the one that impacted Kansas and 675 

Oklahoma during early April of 2007. However, it is able to capture the 2003 February-676 

March frost that killed over 50% of the wheat crops in Ukraine. Winter wheat plants are 677 

tolerant to temperatures of −20 ◦C in the vegetative stages but suffer severe damage at 678 

much more moderate temperatures (−5 to −7 ◦C) during the reproductive stages (Fuller et 679 

al. , 2007). Thus, the impact of a frost depends on the development stage of the wheat [65]. 680 

In Ukraine, the frost occurred in earlier phenological stages of the plant and it affected the 681 

biomass by showing much lower peak amplitudes than other “normal” years. Additionally, 682 

the failure was result not just of the frost but also of winter kill, low snow cover and a May-683 

June drought. However, the frost in the US happened later in the phenological stage of the 684 

plant and did not have any consequence on the amplitude or the length of the peak. Given 685 
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that the 2007 late frost is the only such occurrence during the MODIS era, we did not have 686 

enough data to include a parameter responsive to this event to train the model. In the future, 687 

we will explore the application of the model to AVHRR historical data looking for other 688 

late frost events happening in the past in the US.  689 

In Ukraine, the subnational statistics are divided into fewer cases than the US (29 oblasts 690 

versus about 500 counties). The main advantage of having coarser sub-divisions is that we 691 

can apply the model to every oblast, that there are statistics for all of them and the oblast-692 

level performance is comparable to the county-level (same error of 0.4 t/ha). However, this 693 

lower number of subnational statistics leads to a higher error at the national level as 694 

compared to the US.  695 

Comparing the results of the proposed model to other methods in the literature to monitor 696 

wheat in the US and Ukraine, the proposed model improves [4] and [15] errors both in the 697 

US (7.5% to 5.5%) and Ukraine (12% to 8%) and increases significantly the coefficient of 698 

determination in the US (0.24 to 0.77) and Ukraine (0.71 to 0.88). However, such studies 699 

just analyzed data from 2001 to 2012. Compared to [20], Ukraine results at oblast level 700 

(0.4 to 0.6 t/ha) are in line with their reported errors (0.5 to 0.8 t/ha) though their study just 701 

included the time series from 2001 to 2012. 702 

Going forward we will start to run this model in real time to forecast in season yields. This 703 

will be based on the processing of in season wheat masks using [26] and the integration of 704 

[15] model to forecast the peak amplitude. Regarding the length, we can explore the DVI 705 

versus the GDD evolution and adjust it to a function to forecast the length. Finally, the 30-706 

days average EF can be related with different climatology variables that can be forecast by 707 



 42 

weather models. Additionally, as new data becomes available, it will continue to then 708 

improve the model.  709 

 710 

6. CONCLUSIONS	711 

This work presents a new EO-based empirical winter wheat yield model. It is based on the 712 

un-mixing of the wheat signal by using yearly crop type masks. This wheat signal is used 713 

to calibrate the model using as inputs the seasonal amplitude and length of the DVI peak 714 

and the average of the EF 30 days after the peak. The model is calibrated in the US at the 715 

county level and in Ukraine at the oblast level using historical statistics from 2001 to 2016. 716 

In each administrative unit, a different calibration coefficient (based on all possible 717 

combination of the three regressors) is selected depending on the statistical significance of 718 

each variable. Finally, the model is validated not just during 2001 to 2016 but also 719 

including 2017, which is not used in the calibration process. Overall, the presented model 720 

shows a strong performance both at the national (r2 higher than 0.7 and RMSE of 0.16 t/ha 721 

in the US and 0.27 t/ha in Ukraine) and the subnational level (r2 higher than 0.7 and a 722 

RMSE lower than 0.6 t/ha). Our goal in the future is to extend the model to forecast the 723 

yield and apply it to other crops and other countries. 724 
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